Receptors, AMPA
"Receptors, AMPA" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid).
Descriptor ID |
D018091
|
MeSH Number(s) |
D12.776.157.530.400.400.500.100 D12.776.543.550.450.500.200.100 D12.776.543.585.400.500.200.100 D12.776.543.750.720.200.450.400.100
|
Concept/Terms |
Receptors, AMPA- Receptors, AMPA
- AMPA Receptors
- Quisqualate Receptors
- Receptors, Quisqualate
- Quisqualate Receptor
- Receptor, Quisqualate
- AMPA Receptor
- Receptor, AMPA
|
Below are MeSH descriptors whose meaning is more general than "Receptors, AMPA".
- Chemicals and Drugs [D]
- Amino Acids, Peptides, and Proteins [D12]
- Proteins [D12.776]
- Carrier Proteins [D12.776.157]
- Membrane Transport Proteins [D12.776.157.530]
- Ion Channels [D12.776.157.530.400]
- Ligand-Gated Ion Channels [D12.776.157.530.400.400]
- Receptors, Ionotropic Glutamate [D12.776.157.530.400.400.500]
- Receptors, AMPA [D12.776.157.530.400.400.500.100]
- Membrane Proteins [D12.776.543]
- Membrane Glycoproteins [D12.776.543.550]
- Ion Channels [D12.776.543.550.450]
- Ligand-Gated Ion Channels [D12.776.543.550.450.500]
- Receptors, Ionotropic Glutamate [D12.776.543.550.450.500.200]
- Receptors, AMPA [D12.776.543.550.450.500.200.100]
- Membrane Transport Proteins [D12.776.543.585]
- Ion Channels [D12.776.543.585.400]
- Ligand-Gated Ion Channels [D12.776.543.585.400.500]
- Receptors, Ionotropic Glutamate [D12.776.543.585.400.500.200]
- Receptors, AMPA [D12.776.543.585.400.500.200.100]
- Receptors, Cell Surface [D12.776.543.750]
- Receptors, Neurotransmitter [D12.776.543.750.720]
- Receptors, Amino Acid [D12.776.543.750.720.200]
- Receptors, Glutamate [D12.776.543.750.720.200.450]
- Receptors, Ionotropic Glutamate [D12.776.543.750.720.200.450.400]
- Receptors, AMPA [D12.776.543.750.720.200.450.400.100]
Below are MeSH descriptors whose meaning is more specific than "Receptors, AMPA".
This graph shows the total number of publications written about "Receptors, AMPA" by people in this website by year, and whether "Receptors, AMPA" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
1998 | 2 | 0 | 2 | 1999 | 1 | 2 | 3 | 2001 | 3 | 1 | 4 | 2002 | 2 | 1 | 3 | 2003 | 0 | 1 | 1 | 2004 | 2 | 0 | 2 | 2005 | 2 | 3 | 5 | 2006 | 2 | 3 | 5 | 2007 | 2 | 1 | 3 | 2008 | 7 | 0 | 7 | 2009 | 1 | 4 | 5 | 2010 | 3 | 1 | 4 | 2011 | 1 | 1 | 2 | 2012 | 1 | 3 | 4 | 2013 | 3 | 1 | 4 | 2014 | 0 | 5 | 5 | 2015 | 5 | 1 | 6 | 2016 | 1 | 1 | 2 | 2017 | 4 | 1 | 5 | 2018 | 4 | 2 | 6 | 2019 | 1 | 1 | 2 | 2020 | 0 | 1 | 1 | 2021 | 1 | 3 | 4 | 2022 | 0 | 1 | 1 | 2023 | 0 | 1 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Receptors, AMPA" by people in Profiles.
-
XiangWei W, Perszyk RE, Liu N, Xu Y, Bhattacharya S, Shaulsky GH, Smith-Hicks C, Fatemi A, Fry AE, Chandler K, Wang T, Vogt J, Cohen JS, Paciorkowski AR, Poduri A, Zhang Y, Wang S, Wang Y, Zhai Q, Fang F, Leng J, Garber K, Myers SJ, Jauss RT, Park KL, Benke TA, Lemke JR, Yuan H, Jiang Y, Traynelis SF. Clinical and functional consequences of GRIA variants in patients with neurological diseases. Cell Mol Life Sci. 2023 Nov 03; 80(11):345.
-
Matthews E, Schmitt B, Passeri M, Mizenko C, Orjuela K, Piquet A. AMPA Receptor Encephalitis in a Patient With Metastatic Breast Cancer Receiving Palbociclib: A Case Report. Neurol Neuroimmunol Neuroinflamm. 2022 09; 9(5).
-
Sanderson JL, Freund RK, Gorski JA, Dell'Acqua ML. ?-Amyloid disruption of LTP/LTD balance is mediated by AKAP150-anchored PKA and Calcineurin regulation of Ca2+-permeable AMPA receptors. Cell Rep. 2021 10 05; 37(1):109786.
-
Kadgien CA, Kamesh A, Milnerwood AJ. Endosomal traffic and glutamate synapse activity are increased in VPS35 D620N mutant knock-in mouse neurons, and resistant to LRRK2 kinase inhibition. Mol Brain. 2021 09 16; 14(1):143.
-
Bourke AM, Schwartz SL, Bowen AB, Kleinjan MS, Winborn CS, Kareemo DJ, Gutnick A, Schwarz TL, Kennedy MJ. zapERtrap: A light-regulated ER release system reveals unexpected neuronal trafficking pathways. J Cell Biol. 2021 09 06; 220(9).
-
Cai Y, Nielsen BE, Boxer EE, Aoto J, Ford CP. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron. 2021 04 07; 109(7):1137-1149.e5.
-
Caffino L, Moro F, Mottarlini F, Targa G, Di Clemente A, Toia M, Orr? A, Giannotti G, Fumagalli F, Cervo L. Repeated exposure to cocaine during adolescence enhances the rewarding threshold for cocaine-conditioned place preference in adulthood. Addict Biol. 2021 09; 26(5):e13012.
-
O'Leary H, Vanderlinden L, Southard L, Castano A, Saba LM, Benke TA. Transcriptome analysis of rat dorsal hippocampal CA1 after an early life seizure induced by kainic acid. Epilepsy Res. 2020 03; 161:106283.
-
Mamaligas AA, Barcomb K, Ford CP. Cholinergic Transmission at Muscarinic Synapses in the Striatum Is Driven Equally by Cortical and Thalamic Inputs. Cell Rep. 2019 07 23; 28(4):1003-1014.e3.
-
Salpietro V, Dixon CL, Guo H, Bello OD, Vandrovcova J, Efthymiou S, Maroofian R, Heimer G, Burglen L, Valence S, Torti E, Hacke M, Rankin J, Tariq H, Colin E, Procaccio V, Striano P, Mankad K, Lieb A, Chen S, Pisani L, Bettencourt C, M?nnikk? R, Manole A, Brusco A, Grosso E, Ferrero GB, Armstrong-Moron J, Gueden S, Bar-Yosef O, Tzadok M, Monaghan KG, Santiago-Sim T, Person RE, Cho MT, Willaert R, Yoo Y, Chae JH, Quan Y, Wu H, Wang T, Bernier RA, Xia K, Blesson A, Jain M, Motazacker MM, Jaeger B, Schneider AL, Boysen K, Muir AM, Myers CT, Gavrilova RH, Gunderson L, Schultz-Rogers L, Klee EW, Dyment D, Osmond M, Parellada M, Llorente C, Gonzalez-Pe?as J, Carracedo A, Van Haeringen A, Ruivenkamp C, Nava C, Heron D, Nardello R, Iacomino M, Minetti C, Skabar A, Fabretto A, Raspall-Chaure M, Chez M, Tsai A, Fassi E, Shinawi M, Constantino JN, De Zorzi R, Fortuna S, Kok F, Keren B, Bonneau D, Choi M, Benzeev B, Zara F, Mefford HC, Scheffer IE, Clayton-Smith J, Macaya A, Rothman JE, Eichler EE, Kullmann DM, Houlden H. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun. 2019 07 12; 10(1):3094.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|