Serine-Arginine Splicing Factors
"Serine-Arginine Splicing Factors" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
A family of regulatory factors essential for constitutive and alternative splicing in RNA metabolism.
Descriptor ID |
D000068103
|
MeSH Number(s) |
D12.776.157.725.829.500 D12.776.664.962.829.500
|
Concept/Terms |
Serine-Arginine Splicing Factors- Serine-Arginine Splicing Factors
- Factors, Serine-Arginine Splicing
- Serine Arginine Splicing Factors
- Splicing Factors, Serine-Arginine
- Serine-Arginine-Rich Splicing Proteins
- Proteins, Serine-Arginine-Rich Splicing
- Serine Arginine Rich Splicing Proteins
- Splicing Proteins, Serine-Arginine-Rich
- SR-Rich Splicing Proteins
- Proteins, SR-Rich Splicing
- SR Rich Splicing Proteins
- Splicing Proteins, SR-Rich
|
Below are MeSH descriptors whose meaning is more general than "Serine-Arginine Splicing Factors".
Below are MeSH descriptors whose meaning is more specific than "Serine-Arginine Splicing Factors".
This graph shows the total number of publications written about "Serine-Arginine Splicing Factors" by people in this website by year, and whether "Serine-Arginine Splicing Factors" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2004 | 0 | 1 | 1 | 2006 | 0 | 1 | 1 | 2012 | 0 | 1 | 1 | 2015 | 0 | 1 | 1 | 2018 | 0 | 1 | 1 | 2019 | 2 | 0 | 2 | 2020 | 0 | 1 | 1 | 2021 | 1 | 0 | 1 | 2022 | 0 | 1 | 1 | 2023 | 0 | 1 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Serine-Arginine Splicing Factors" by people in Profiles.
-
Campbell AE, Dyle MC, Albanese R, Matheny T, Sudheendran K, Cort?zar MA, Forman T, Fu R, Gillen AE, Caruthers MH, Floor SN, Calviello L, Jagannathan S. Compromised nonsense-mediated RNA decay results in truncated RNA-binding protein production upon DUX4 expression. Cell Rep. 2023 06 27; 42(6):112642.
-
Sertznig H, Roesmann F, Wilhelm A, Heininger D, Bleekmann B, Elsner C, Santiago M, Schuhenn J, Karakoese Z, Benatzy Y, Snodgrass R, Esser S, Sutter K, Dittmer U, Widera M. SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively affecting HIV-1 post-integration steps. Front Immunol. 2022; 13:935800.
-
Dennison BJC, Larson ED, Fu R, Mo J, Fantauzzo KA. Srsf3 mediates alternative RNA splicing downstream of PDGFRa signaling in the facial mesenchyme. Development. 2021 07 15; 148(14).
-
Klein IA, Boija A, Afeyan LK, Hawken SW, Fan M, Dall'Agnese A, Oksuz O, Henninger JE, Shrinivas K, Sabari BR, Sagi I, Clark VE, Platt JM, Kar M, McCall PM, Zamudio AV, Manteiga JC, Coffey EL, Li CH, Hannett NM, Guo YE, Decker TM, Lee TI, Zhang T, Weng JK, Taatjes DJ, Chakraborty A, Sharp PA, Chang YT, Hyman AA, Gray NS, Young RA. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020 06 19; 368(6497):1386-1392.
-
Haltenhof T, Kotte A, De Bortoli F, Schiefer S, Meinke S, Emmerichs AK, Petermann KK, Timmermann B, Imhof P, Franz A, Loll B, Wahl MC, Preu?ner M, Heyd F. A Conserved Kinase-Based Body-Temperature Sensor Globally Controls Alternative Splicing and Gene Expression. Mol Cell. 2020 04 02; 78(1):57-69.e4.
-
Bjorkman KK, Buvoli M, Pugach EK, Polmear MM, Leinwand LA. miR-1/206 downregulates splicing factor Srsf9 to promote C2C12 differentiation. Skelet Muscle. 2019 12 02; 9(1):31.
-
Pollyea DA, Harris C, Rabe JL, Hedin BR, De Arras L, Katz S, Wheeler E, Bejar R, Walter MJ, Jordan CT, Pietras EM, Alper S. Myelodysplastic syndrome-associated spliceosome gene mutations enhance innate immune signaling. Haematologica. 2019 09; 104(9):e388-e392.
-
Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, Long N, Schultz AR, Traer E, Abel M, Agarwal A, Blucher A, Borate U, Bryant J, Burke R, Carlos A, Carpenter R, Carroll J, Chang BH, Coblentz C, d'Almeida A, Cook R, Danilov A, Dao KT, Degnin M, Devine D, Dibb J, Edwards DK, Eide CA, English I, Glover J, Henson R, Ho H, Jemal A, Johnson K, Johnson R, Junio B, Kaempf A, Leonard J, Lin C, Liu SQ, Lo P, Loriaux MM, Luty S, Macey T, MacManiman J, Martinez J, Mori M, Nelson D, Nichols C, Peters J, Ramsdill J, Rofelty A, Schuff R, Searles R, Segerdell E, Smith RL, Spurgeon SE, Sweeney T, Thapa A, Visser C, Wagner J, Watanabe-Smith K, Werth K, Wolf J, White L, Yates A, Zhang H, Cogle CR, Collins RH, Connolly DC, Deininger MW, Drusbosky L, Hourigan CS, Jordan CT, Kropf P, Lin TL, Martinez ME, Medeiros BC, Pallapati RR, Pollyea DA, Swords RT, Watts JM, Weir SJ, Wiest DL, Winters RM, McWeeney SK, Druker BJ. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018 10; 562(7728):526-531.
-
Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, Martinez NM, Harrington CT, Chung EY, Perazzelli J, Hofmann TJ, Maude SL, Raman P, Barrera A, Gill S, Lacey SF, Melenhorst JJ, Allman D, Jacoby E, Fry T, Mackall C, Barash Y, Lynch KW, Maris JM, Grupp SA, Thomas-Tikhonenko A. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015 Dec; 5(12):1282-95.
-
Zaccara S, Tebaldi T, Pederiva C, Ciribilli Y, Bisio A, Inga A. p53-directed translational control can shape and expand the universe of p53 target genes. Cell Death Differ. 2014 Oct; 21(10):1522-34.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|