Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Timothy A McKinsey

TitleProfessor
InstitutionUniversity of Colorado Denver - Anschutz Medical Campus
DepartmentSOM-MED
Phone303/724-5476

    Collapse Research 
    Collapse research activities and funding
    R01HL150225     (VONDRISKA, THOMAS M.)Dec 15, 2019 - Nov 30, 2023
    NIH
    Small molecule therapies targeting chromatin architecture in heart failure
    Role: Co-Principal Investigator

    R01HL147558     (MCKINSEY, TIMOTHY)Apr 4, 2019 - Mar 31, 2023
    NIH
    Deacetylase-Dependent Control of Diastolic Dysfunction and HFpEF
    Role: Principal Investigator

    R01DK119594     (MCKINSEY, TIMOTHY)Jan 15, 2019 - Dec 31, 2022
    NIH
    Screening and Development of Small Molecule HDAC11 Inhibitors to Treat Obesity and Diabetes.
    Role: Principal Investigator

    R01HL127240     (MCKINSEY, TIMOTHY)Apr 1, 2015 - Jun 30, 2023
    NIH
    Regulation of Chromatin Signaling in Heart Failure by the BRD4 Bromodomain Protein.
    Role: Co-Principal Investigator

    S10OD018156     (BUTTRICK, PETER N.)Jul 1, 2014 - Jun 30, 2015
    NIH
    Small Animal Ultrasound Imager - Vevo 2100
    Role: Co-Principal Investigator

    R01HL116848     (MCKINSEY, TIMOTHY)Aug 8, 2013 - Jun 30, 2022
    NIH
    Regulation of Cardiac Signaling by Class I Histone Deacetylases
    Role: Principal Investigator

    R21HL113846     (MIYAMOTO, SHELLEY DEANNE)Jan 15, 2013 - Nov 30, 2015
    NIH
    The Role of Histone Deacytelases in Right Ventricular Adaptation in Hypoplastic L
    Role: Co-Principal Investigator

    R21AG043822     (MCKINSEY, TIMOTHY)Sep 30, 2012 - Aug 31, 2015
    NIH
    Isoform-Selective HDAC Inhibitors for Age-Associated Diastolic Dysfunction
    Role: Principal Investigator

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    List All   |   Timeline
    1. Ambardekar AV, Weiser-Evans MCM, McKinsey TA. Arterial wall rejuvenation: the potential of targeting matrix metalloprotease 2 to treat vascular aging. Cardiovasc Res. 2022 Jul 27; 118(10):2229-2230. PMID: 35512358.
      View in: PubMed
    2. Eaton DM, Martin TG, Kasa M, Djalinac N, Ljubojevic-Holzer S, Von Lewinski D, Pöttler M, Kampaengsri T, Krumphuber A, Scharer K, Maechler H, Zirlik A, McKinsey TA, Kirk JA, Houser SR, Rainer PP, Wallner M. HDAC Inhibition Regulates Cardiac Function by Increasing Myofilament Calcium Sensitivity and Decreasing Diastolic Tension. Pharmaceutics. 2022 Jul 21; 14(7). PMID: 35890404.
      View in: PubMed
    3. Tharp CA, McKinsey TA. Tissue is the issue: Endomyocardial biopsies to elucidate molecular mechanisms and tailor therapy for HFpEF. J Mol Cell Cardiol. 2022 Aug; 169:111-112. PMID: 35660295.
      View in: PubMed
    4. Lin YH, Major JL, Liebner T, Hourani Z, Travers JG, Wennersten SA, Haefner KR, Cavasin MA, Wilson CE, Jeong MY, Han Y, Gotthardt M, Ferguson SK, Ambardekar AV, Lam MP, Choudhary C, Granzier HL, Woulfe KC, McKinsey TA. HDAC6 modulates myofibril stiffness and diastolic function of the heart. J Clin Invest. 2022 May 16; 132(10). PMID: 35575093.
      View in: PubMed
    5. Kuwabara JT, Hara A, Heckl JR, Peña B, Bhutada S, DeMaris R, Ivey MJ, DeAngelo LP, Liu X, Park J, Jahansooz JR, Mestroni L, McKinsey TA, Apte SS, Tallquist MD. Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. J Mol Cell Cardiol. 2022 Aug; 169:84-95. PMID: 35569524.
      View in: PubMed
    6. Ambardekar AV, Stratton MS, Weiser-Evans MCM, Moulton KS, McKinsey TA. Reply: Aortic Valve Remodeling in CF-LVAD: Beyond the Arterial Wall. J Am Coll Cardiol. 2022 03 29; 79(12):e223. PMID: 35331421.
      View in: PubMed
    7. Vagnozzi RJ, McKinsey TA. T cell immunotherapy for cardiac fibrosis: mRNA starts the CAR. Cell Stem Cell. 2022 03 03; 29(3):352-354. PMID: 35245466.
      View in: PubMed
    8. Travers JG, Tharp CA, Rubino M, McKinsey TA. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J Clin Invest. 2022 03 01; 132(5). PMID: 35229727.
      View in: PubMed
    9. Çakir I, Hadley CK, Pan PL, Bagchi RA, Ghamari-Langroudi M, Porter DT, Wang Q, Litt MJ, Jana S, Hagen S, Lee P, White A, Lin JD, McKinsey TA, Cone RD. Histone deacetylase 6 inhibition restores leptin sensitivity and reduces obesity. Nat Metab. 2022 01; 4(1):44-59. PMID: 35039672.
      View in: PubMed
    10. Ambardekar AV, Stratton MS, Dobrinskikh E, Hunter KS, Tatman PD, Lemieux ME, Cleveland JC, Tuder RM, Weiser-Evans MCM, Moulton KS, McKinsey TA. Matrix-Degrading Enzyme Expression and Aortic Fibrosis During Continuous-Flow Left Ventricular Mechanical Support. J Am Coll Cardiol. 2021 11 02; 78(18):1782-1795. PMID: 34711337.
      View in: PubMed
    11. Schena GJ, Murray EK, Hildebrand AN, Headrick AL, Yang Y, Koch KA, Kubo H, Eaton D, Johnson J, Berretta R, Mohsin S, Kishore R, McKinsey TA, Elrod JW, Houser SR. Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. Am J Physiol Heart Circ Physiol. 2021 12 01; 321(6):H1014-H1029. PMID: 34623184.
      View in: PubMed
    12. Guo W, Zhu C, Yin Z, Zhang Y, Wang C, Walk AS, Lin YH, McKinsey TA, Woulfe KC, Ren J, Chew HG. The ryanodine receptor stabilizer S107 ameliorates contractility of adult Rbm20 knockout rat cardiomyocytes. Physiol Rep. 2021 09; 9(17):e15011. PMID: 34523260.
      View in: PubMed
    13. Robinson EL, McKinsey TA. Cat-apulting Toward a Molecular Understanding of HFpEF. JACC Basic Transl Sci. 2021 Aug; 6(8):673-675. PMID: 34466753.
      View in: PubMed
    14. Hobby ARH, Berretta RM, Eaton DM, Kubo H, Feldsott E, Yang Y, Headrick AL, Koch KA, Rubino M, Kurian J, Khan M, Tan Y, Mohsin S, Gallucci S, McKinsey TA, Houser SR. Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. Am J Physiol Heart Circ Physiol. 2021 10 01; 321(4):H684-H701. PMID: 34415185.
      View in: PubMed
    15. Alexanian M, Przytycki PF, Micheletti R, Padmanabhan A, Ye L, Travers JG, Gonzalez-Teran B, Silva AC, Duan Q, Ranade SS, Felix F, Linares-Saldana R, Li L, Lee CY, Sadagopan N, Pelonero A, Huang Y, Andreoletti G, Jain R, McKinsey TA, Rosenfeld MG, Gifford CA, Pollard KS, Haldar SM, Srivastava D. A transcriptional switch governs fibroblast activation in heart disease. Nature. 2021 07; 595(7867):438-443. PMID: 34163071.
      View in: PubMed
    16. Ferguson BS, Wennersten SA, Demos-Davies KM, Rubino M, Robinson EL, Cavasin MA, Stratton MS, Kidger AM, Hu T, Keyse SM, McKnight RA, Lane RH, Nozik ES, Weiser-Evans MCM, McKinsey TA. DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2021 08 01; 321(2):H382-H389. PMID: 34142888.
      View in: PubMed
    17. Travers JG, Wennersten SA, Peña B, Bagchi RA, Smith HE, Hirsch RA, Vanderlinden LA, Lin YH, Dobrinskikh E, Demos-Davies KM, Cavasin MA, Mestroni L, Steinkühler C, Lin CY, Houser SR, Woulfe KC, Lam MPY, McKinsey TA. HDAC Inhibition Reverses Preexisting Diastolic Dysfunction and Blocks Covert Extracellular Matrix Remodeling. Circulation. 2021 05 11; 143(19):1874-1890. PMID: 33682427.
      View in: PubMed
    18. Yang Y, Kurian J, Schena G, Johnson J, Kubo H, Travers JG, Kang C, Lucchese AM, Eaton DM, Lv M, Li N, Leynes LG, Yu D, Yang F, McKinsey TA, Kishore R, Khan M, Mohsin S, Houser SR. Cardiac Remodeling During Pregnancy With Metabolic Syndrome: Prologue of Pathological Remodeling. Circulation. 2021 02 16; 143(7):699-712. PMID: 33587660.
      View in: PubMed
    19. Riching AS, Danis E, Zhao Y, Cao Y, Chi C, Bagchi RA, Klein BJ, Xu H, Kutateladze TG, McKinsey TA, Buttrick PM, Song K. Suppression of canonical TGF-ß signaling enables GATA4 to interact with H3K27me3 demethylase JMJD3 to promote cardiomyogenesis. J Mol Cell Cardiol. 2021 04; 153:44-59. PMID: 33359755.
      View in: PubMed
    20. Woulfe KC, Travers JG, McKinsey TA. A Phosphatase Anchor Weighs on the Heart. Circulation. 2020 09 08; 142(10):963-966. PMID: 32897751.
      View in: PubMed
    21. Major JL, Bagchi RA, McKinsey TA. ERRing on the Side of a Mature Heart. Circ Res. 2020 06 05; 126(12):1703-1705. PMID: 32496915.
      View in: PubMed
    22. Lin YH, Schmidt W, Fritz KS, Jeong MY, Cammarato A, Foster DB, Biesiadecki BJ, McKinsey TA, Woulfe KC. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol. 2020 02; 139:135-147. PMID: 31981571.
      View in: PubMed
    23. Wallner M, Eaton DM, Berretta RM, Liesinger L, Schittmayer M, Gindlhuber J, Wu J, Jeong MY, Lin YH, Borghetti G, Baker ST, Zhao H, Pfleger J, Blass S, Rainer PP, von Lewinski D, Bugger H, Mohsin S, Graier WF, Zirlik A, McKinsey TA, Birner-Gruenberger R, Wolfson MR, Houser SR. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med. 2020 01 08; 12(525). PMID: 31915304.
      View in: PubMed
    24. Travers JG, McKinsey TA. ABHD5 cleaves HDAC4 to benefit the heart. Nat Metab. 2019 11; 1(11):1034-1035. PMID: 32694866.
      View in: PubMed
    25. Aguado BA, Schuetze KB, Grim JC, Walker CJ, Cox AC, Ceccato TL, Tan AC, Sucharov CC, Leinwand LA, Taylor MRG, McKinsey TA, Anseth KS. Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Sci Transl Med. 2019 09 11; 11(509). PMID: 31511425.
      View in: PubMed
    26. Stratton MS, Bagchi RA, Felisbino MB, Hirsch RA, Smith HE, Riching AS, Enyart BY, Koch KA, Cavasin MA, Alexanian M, Song K, Qi J, Lemieux ME, Srivastava D, Lam MPY, Haldar SM, Lin CY, McKinsey TA. Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation. Circ Res. 2019 09 13; 125(7):662-677. PMID: 31409188.
      View in: PubMed
    27. Ou Q, Jacobson Z, Abouleisa RRE, Tang XL, Hindi SM, Kumar A, Ivey KN, Giridharan G, El-Baz A, Brittian K, Rood B, Lin YH, Watson SA, Perbellini F, McKinsey TA, Hill BG, Jones SP, Terracciano CM, Bolli R, Mohamed TMA. Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circ Res. 2019 08 30; 125(6):628-642. PMID: 31310161.
      View in: PubMed
    28. Peña B, Maldonado M, Bonham AJ, Aguado BA, Dominguez-Alfaro A, Laughter M, Rowland TJ, Bardill J, Farnsworth NL, Alegret Ramon N, Taylor MRG, Anseth KS, Prato M, Shandas R, McKinsey TA, Park D, Mestroni L. Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications. ACS Appl Mater Interfaces. 2019 May 22; 11(20):18671-18680. PMID: 31021594.
      View in: PubMed
    29. Roman J, Barnes TR, Kervitsky DJ, Cosgrove GP, Doherty DE, Tager AM, Richeldi L, White ES, Brenner DA, Schnapp LM, Hewitson TD, Jugdutt BI, McKinsey TA, Tosi JD, Crane S, Brown KK. The Fibrosis Across Organs Symposium: A Roadmap for Future Research Priorities. Am J Med Sci. 2019 05; 357(5):405-410. PMID: 31010467.
      View in: PubMed
    30. Major JL, McKinsey TA. Putting the Heat on Cardiac Fibrosis: Hsp20 Regulates Myocyte-To-Fibroblast Crosstalk. JACC Basic Transl Sci. 2019 Apr; 4(2):200-203. PMID: 31061922.
      View in: PubMed
    31. Alexanian M, Padmanabhan A, McKinsey TA, Haldar SM. Epigenetic therapies in heart failure. J Mol Cell Cardiol. 2019 05; 130:197-204. PMID: 30991033.
      View in: PubMed
    32. Hu T, Schreiter FC, Bagchi RA, Tatman PD, Hannink M, McKinsey TA. HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. J Biol Chem. 2019 05 24; 294(21):8640-8652. PMID: 30962285.
      View in: PubMed
    33. Sucharov CC, Nakano SJ, Slavov D, Schwisow JA, Rodriguez E, Nunley K, Medway A, Stafford N, Nelson P, McKinsey TA, Movsesian M, Minobe W, Carroll IA, Taylor MRG, Bristow MR. A PDE3A Promoter Polymorphism Regulates cAMP-Induced Transcriptional Activity in Failing Human Myocardium. J Am Coll Cardiol. 2019 03 19; 73(10):1173-1184. PMID: 30871701.
      View in: PubMed
    34. Fox BM, Gil HW, Kirkbride-Romeo L, Bagchi RA, Wennersten SA, Haefner KR, Skrypnyk NI, Brown CN, Soranno DE, Gist KM, Griffin BR, Jovanovich A, Reisz JA, Wither MJ, D'Alessandro A, Edelstein CL, Clendenen N, McKinsey TA, Altmann C, Faubel S. Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney Int. 2019 03; 95(3):590-610. PMID: 30709662.
      View in: PubMed
    35. Felisbino MB, McKinsey TA. Epigenetics in Cardiac Fibrosis: Emphasis on Inflammation and Fibroblast Activation. JACC Basic Transl Sci. 2018 Oct; 3(5):704-715. PMID: 30456341.
      View in: PubMed
    36. McKinsey TA, Vondriska TM, Wang Y. Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Res. 2018; 7. PMID: 30416708.
      View in: PubMed
    37. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 30089714.
      View in: PubMed
    38. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 28137840.
      View in: PubMed
    39. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 28515341.
      View in: PubMed
    40. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 28549058.
      View in: PubMed
    41. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 28721198.
      View in: PubMed
    42. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 31836543.
      View in: PubMed
    43. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 32364532.
      View in: PubMed
    44. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 32435374.
      View in: PubMed
    45. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 11796223.
      View in: PubMed
    46. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 20133912.
      View in: PubMed
    47. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 25220405.
      View in: PubMed
    48. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 25398983.
      View in: PubMed
    49. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 25582694.
      View in: PubMed
    50. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 26940659.
      View in: PubMed
    51. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 27185186.
      View in: PubMed
    52. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 16648482.
      View in: PubMed
    53. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 22558514.
      View in: PubMed
    54. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 16511602.
      View in: PubMed
    55. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 7739562.
      View in: PubMed
    56. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 12761226.
      View in: PubMed
    57. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 8627798.
      View in: PubMed
    58. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 21879446.
      View in: PubMed
    59. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 22711276.
      View in: PubMed
    60. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 16584705.
      View in: PubMed
    61. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 10737771.
      View in: PubMed
    62. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 17217938.
      View in: PubMed
    63. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 18332134.
      View in: PubMed
    64. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 11532390.
      View in: PubMed
    65. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 21267510.
      View in: PubMed
    66. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 17019803.
      View in: PubMed
    67. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 15572669.
      View in: PubMed
    68. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 18332106.
      View in: PubMed
    69. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 12473352.
      View in: PubMed
    70. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 10983972.
      View in: PubMed
    71. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 11248078.
      View in: PubMed
    72. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 10702792.
      View in: PubMed
    73. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 33636116.
      View in: PubMed
    74. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 33665513.
      View in: PubMed
    75. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 34901955.
      View in: PubMed
    76. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 35022484.
      View in: PubMed
    77. Rulifson G, Bielefeldt AR. Evolution of Students' Varied Conceptualizations About Socially Responsible Engineering: A Four Year Longitudinal Study. Sci Eng Ethics. 2019 06; 25(3):939-974. PMID: 35149557.
      View in: PubMed
    78. Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA, Mahaffey JH, Monzani V, Saripalli C, Mascagni P, Reece TB, Ambardekar AV, Granzier HL, Dinarello CA, McKinsey TA. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med. 2018 02 07; 10(427). PMID: 29437146.
      View in: PubMed
    79. Habibian JS, Jefic M, Bagchi RA, Lane RH, McKnight RA, McKinsey TA, Morrison RF, Ferguson BS. DUSP5 functions as a feedback regulator of TNFa-induced ERK1/2 dephosphorylation and inflammatory gene expression in adipocytes. Sci Rep. 2017 10 10; 7(1):12879. PMID: 29018280.
      View in: PubMed
    80. Blakeslee WW, Lin YH, Stratton MS, Tatman PD, Hu T, Ferguson BS, McKinsey TA. Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes. J Mol Cell Cardiol. 2017 11; 112:74-82. PMID: 28886967.
      View in: PubMed
    81. Stratton MS, Koch KA, McKinsey TA. p38a: A Profibrotic Signaling Nexus. Circulation. 2017 08 08; 136(6):562-565. PMID: 28784825.
      View in: PubMed
    82. Hooker JM, Strebl MG, Schroeder FA, Wey HY, Ambardekar AV, McKinsey TA, Schoenberger M. Imaging cardiac SCN5A using the novel F-18 radiotracer radiocaine. Sci Rep. 2017 02 16; 7:42136. PMID: 28205593.
      View in: PubMed
    83. Schuetze KB, Stratton MS, Blakeslee WW, Wempe MF, Wagner FF, Holson EB, Kuo YM, Andrews AJ, Gilbert TM, Hooker JM, McKinsey TA. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts. J Pharmacol Exp Ther. 2017 04; 361(1):140-150. PMID: 28174211.
      View in: PubMed
    84. Aiello RJ, Bourassa PA, Zhang Q, Dubins J, Goldberg DR, De Lombaert S, Humbert M, Guignabert C, Cavasin MA, McKinsey TA, Paralkar V. Tryptophan hydroxylase 1 Inhibition Impacts Pulmonary Vascular Remodeling in Two Rat Models of Pulmonary Hypertension. J Pharmacol Exp Ther. 2017 Feb; 360(2):267-279. PMID: 27927914.
      View in: PubMed
    85. Schuetze KB, Koch KA, McKinsey TA. The potential of targeting epigenetic regulators for the treatment of fibrotic cardiac diseases. Future Med Chem. 2016 09; 8(13):1533-6. PMID: 27556930.
      View in: PubMed
    86. Angiolilli C, Kabala PA, Grabiec AM, Van Baarsen IM, Ferguson BS, García S, Malvar Fernandez B, McKinsey TA, Tak PP, Fossati G, Mascagni P, Baeten DL, Reedquist KA. Histone deacetylase 3 regulates the inflammatory gene expression programme of rheumatoid arthritis fibroblast-like synoviocytes. Ann Rheum Dis. 2017 Jan; 76(1):277-285. PMID: 27457515.
      View in: PubMed
    87. Stratton MS, Lin CY, Anand P, Tatman PD, Ferguson BS, Wickers ST, Ambardekar AV, Sucharov CC, Bradner JE, Haldar SM, McKinsey TA. Signal-Dependent Recruitment of BRD4 to Cardiomyocyte Super-Enhancers Is Suppressed by a MicroRNA. Cell Rep. 2016 08 02; 16(5):1366-1378. PMID: 27425608.
      View in: PubMed
    88. Nozik-Grayck E, Woods C, Stearman RS, Venkataraman S, Ferguson BS, Swain K, Bowler RP, Geraci MW, Ihida-Stansbury K, Stenmark KR, McKinsey TA, Domann FE. Histone deacetylation contributes to low extracellular superoxide dismutase expression in human idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016 07 01; 311(1):L124-34. PMID: 27233998.
      View in: PubMed
    89. Reid BG, Stratton MS, Bowers S, Cavasin MA, Demos-Davies KM, Susano I, McKinsey TA. Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol. 2016 08; 97:106-13. PMID: 27130278.
      View in: PubMed
    90. Stratton MS, McKinsey TA. Epigenetic regulation of cardiac fibrosis. J Mol Cell Cardiol. 2016 Mar; 92:206-13. PMID: 26876451.
      View in: PubMed
    91. Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C, O'Rourke R, Jones KL, Jeong MY, Walker LA, Buttrick PM, McKinsey TA, Song K. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015 Sep 10; 6:8243. PMID: 26354680.
      View in: PubMed
    92. Schuetze KB, McKinsey TA. TNAP: a new player in cardiac fibrosis? Focus on "Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts". Am J Physiol Cell Physiol. 2015 Aug 01; 309(3):C137-8. PMID: 26108666.
      View in: PubMed
    93. Stauffer BL, Dockstader K, Russell G, Hijmans J, Walker L, Cecil M, Demos-Davies K, Medway A, McKinsey TA, Sucharov CC. Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner. Biochem Biophys Res Commun. 2015 Jun 26; 462(2):131-7. PMID: 25935483.
      View in: PubMed
    94. Salian-Mehta S, Xu M, McKinsey TA, Tobet S, Wierman ME. Novel Interaction of Class IIb Histone Deacetylase 6 (HDAC6) with Class IIa HDAC9 Controls Gonadotropin Releasing Hormone (GnRH) Neuronal Cell Survival and Movement. J Biol Chem. 2015 May 29; 290(22):14045-56. PMID: 25873389.
      View in: PubMed
    95. Lemon DD, Harrison BC, Horn TR, Stratton MS, Ferguson BS, Wempe MF, McKinsey TA. Promiscuous actions of small molecule inhibitors of the protein kinase D-class IIa HDAC axis in striated muscle. FEBS Lett. 2015 Apr 28; 589(10):1080-8. PMID: 25816750.
      View in: PubMed
    96. Ferguson BS, McKinsey TA. Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol. 2015 Jun; 83:14-20. PMID: 25791169.
      View in: PubMed
    97. Cavasin MA, Stenmark KR, McKinsey TA. Emerging roles for histone deacetylases in pulmonary hypertension and right ventricular remodeling (2013 Grover Conference series). Pulm Circ. 2015 Mar; 5(1):63-72. PMID: 25992271.
      View in: PubMed
    98. Stratton MS, McKinsey TA. Acetyl-lysine erasers and readers in the control of pulmonary hypertension and right ventricular hypertrophy. Biochem Cell Biol. 2015 Apr; 93(2):149-57. PMID: 25707943.
      View in: PubMed
    99. Angiolilli C, Grabiec AM, Ferguson BS, Ospelt C, Malvar Fernandez B, van Es IE, van Baarsen LG, Gay S, McKinsey TA, Tak PP, Baeten DL, Reedquist KA. Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann Rheum Dis. 2016 Feb; 75(2):430-8. PMID: 25452308.
      View in: PubMed
    100. Cavasin MA, Demos-Davies KM, Schuetze KB, Blakeslee WW, Stratton MS, Tuder RM, McKinsey TA. Reversal of severe angioproliferative pulmonary arterial hypertension and right ventricular hypertrophy by combined phosphodiesterase-5 and endothelin receptor inhibition. J Transl Med. 2014 Nov 26; 12:314. PMID: 25425003.
      View in: PubMed
    101. McLendon PM, Ferguson BS, Osinska H, Bhuiyan MS, James J, McKinsey TA, Robbins J. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014 Dec 02; 111(48):E5178-86. PMID: 25404307.
      View in: PubMed
    102. Miyazaki-Anzai S, Masuda M, Demos-Davies KM, Keenan AL, Saunders SJ, Masuda R, Jablonski K, Cavasin MA, Kendrick J, Chonchol M, McKinsey TA, Levi M, Miyazaki M. Endoplasmic reticulum stress effector CCAAT/enhancer-binding protein homologous protein (CHOP) regulates chronic kidney disease-induced vascular calcification. J Am Heart Assoc. 2014 Jun 24; 3(3):e000949. PMID: 24963104.
      View in: PubMed
    103. Demos-Davies KM, Ferguson BS, Cavasin MA, Mahaffey JH, Williams SM, Spiltoir JI, Schuetze KB, Horn TR, Chen B, Ferrara C, Scellini B, Piroddi N, Tesi C, Poggesi C, Jeong MY, McKinsey TA. HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling. Am J Physiol Heart Circ Physiol. 2014 Jul 15; 307(2):H252-8. PMID: 24858848.
      View in: PubMed
    104. Haldar SM, McKinsey TA. BET-ting on chromatin-based therapeutics for heart failure. J Mol Cell Cardiol. 2014 Sep; 74:98-102. PMID: 24838003.
      View in: PubMed
    105. Schuetze KB, McKinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs. J Mol Cell Cardiol. 2014 May; 70:100-7. PMID: 24631770.
      View in: PubMed
    106. Williams SM, Golden-Mason L, Ferguson BS, Schuetze KB, Cavasin MA, Demos-Davies K, Yeager ME, Stenmark KR, McKinsey TA. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2014 Feb; 67:112-25. PMID: 24374140.
      View in: PubMed
    107. Pedram A, Razandi M, Narayanan R, Dalton JT, McKinsey TA, Levin ER. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell. 2013 Dec; 24(24):3805-18. PMID: 24152730.
      View in: PubMed
    108. Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res. 2014 Jan 03; 114(1):67-78. PMID: 24122720.
      View in: PubMed
    109. Spiltoir JI, Stratton MS, Cavasin MA, Demos-Davies K, Reid BG, Qi J, Bradner JE, McKinsey TA. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol. 2013 Oct; 63:175-9. PMID: 23939492.
      View in: PubMed
    110. Ferguson BS, Harrison BC, Jeong MY, Reid BG, Wempe MF, Wagner FF, Holson EB, McKinsey TA. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. 2013 Jun 11; 110(24):9806-11. PMID: 23720316.
      View in: PubMed
    111. Kadam RS, Ramamoorthy P, LaFlamme DJ, McKinsey TA, Kompella UB. Hypoxia alters ocular drug transporter expression and activity in rat and calf models: implications for drug delivery. Mol Pharm. 2013 Jun 03; 10(6):2350-61. PMID: 23607566.
      View in: PubMed
    112. Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, Wilkins MR, Wang D, Li M, Stenmark KR, McKinsey TA, Buttrick P. Response to letter regarding article, “histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid”. Circulation. 2013 Apr 09; 127(14):e540. PMID: 23691553.
      View in: PubMed
    113. Ramjiawan A, Bagchi RA, Blant A, Albak L, Cavasin MA, Horn TR, McKinsey TA, Czubryt MP. Roles of histone deacetylation and AMP kinase in regulation of cardiomyocyte PGC-1a gene expression in hypoxia. Am J Physiol Cell Physiol. 2013 Jun 01; 304(11):C1064-72. PMID: 23515531.
      View in: PubMed
    114. Cavasin MA, Demos-Davies K, Horn TR, Walker LA, Lemon DD, Birdsey N, Weiser-Evans MC, Harral J, Irwin DC, Anwar A, Yeager ME, Li M, Watson PA, Nemenoff RA, Buttrick PM, Stenmark KR, McKinsey TA. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res. 2012 Mar 02; 110(5):739-48. PMID: 22282194.
      View in: PubMed
    115. McKinsey TA. Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol. 2012; 52:303-19. PMID: 21942627.
      View in: PubMed
    116. Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, Strassheim D, Meyrick B, Yeager ME, Flockton AR, McKeon BA, Lemon DD, Horn TR, Anwar A, Barajas C, Stenmark KR. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011 Sep 01; 187(5):2711-22. PMID: 21813768.
      View in: PubMed
    117. Phan D, Stratton MS, Huynh QK, McKinsey TA. A novel protein kinase C target site in protein kinase D is phosphorylated in response to signals for cardiac hypertrophy. Biochem Biophys Res Commun. 2011 Jul 29; 411(2):335-41. PMID: 21726532.
      View in: PubMed
    118. Lemon DD, Horn TR, Cavasin MA, Jeong MY, Haubold KW, Long CS, Irwin DC, McCune SA, Chung E, Leinwand LA, McKinsey TA. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J Mol Cell Cardiol. 2011 Jul; 51(1):41-50. PMID: 21539845.
      View in: PubMed
    119. Sucharov CC, Dockstader K, Nunley K, McKinsey TA, Bristow M. ß-Adrenergic receptor stimulation and activation of protein kinase A protect against a1-adrenergic-mediated phosphorylation of protein kinase D and histone deacetylase 5. J Card Fail. 2011 Jul; 17(7):592-600. PMID: 21703532.
      View in: PubMed
    120. Gamber GG, Meredith E, Zhu Q, Yan W, Rao C, Capparelli M, Burgis R, Enyedy I, Zhang JH, Soldermann N, Beattie K, Rozhitskaya O, Koch KA, Pagratis N, Hosagrahara V, Vega RB, McKinsey TA, Monovich L. 3,5-diarylazoles as novel and selective inhibitors of protein kinase D. Bioorg Med Chem Lett. 2011 Mar 01; 21(5):1447-51. PMID: 21300545.
      View in: PubMed
    121. McKinsey TA. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol. 2011 Oct; 51(4):491-6. PMID: 21108947.
      View in: PubMed
    122. Lemon DD, Papst PJ, Joly K, Plato CF, McKinsey TA. A high-performance liquid chromatography assay for quantification of cardiac myosin heavy chain isoform protein expression. Anal Biochem. 2011 Jan 01; 408(1):132-5. PMID: 20816744.
      View in: PubMed
    123. Meredith EL, Ardayfio O, Beattie K, Dobler MR, Enyedy I, Gaul C, Hosagrahara V, Jewell C, Koch K, Lee W, Lehmann H, McKinsey TA, Miranda K, Pagratis N, Pancost M, Patnaik A, Phan D, Plato C, Qian M, Rajaraman V, Rao C, Rozhitskaya O, Ruppen T, Shi J, Siska SJ, Springer C, van Eis M, Vega RB, von Matt A, Yang L, Yoon T, Zhang JH, Zhu N, Monovich LG. Identification of orally available naphthyridine protein kinase D inhibitors. J Med Chem. 2010 Aug 12; 53(15):5400-21. PMID: 20684591.
      View in: PubMed
    124. Meredith EL, Beattie K, Burgis R, Capparelli M, Chapo J, Dipietro L, Gamber G, Enyedy I, Hood DB, Hosagrahara V, Jewell C, Koch KA, Lee W, Lemon DD, McKinsey TA, Miranda K, Pagratis N, Phan D, Plato C, Rao C, Rozhitskaya O, Soldermann N, Springer C, van Eis M, Vega RB, Yan W, Zhu Q, Monovich LG. Identification of potent and selective amidobipyridyl inhibitors of protein kinase D. J Med Chem. 2010 Aug 12; 53(15):5422-38. PMID: 20684592.
      View in: PubMed
    125. Harrison BC, Huynh K, Lundgaard GL, Helmke SM, Perryman MB, McKinsey TA. Protein kinase C-related kinase targets nuclear localization signals in a subset of class IIa histone deacetylases. FEBS Lett. 2010 Mar 19; 584(6):1103-10. PMID: 20188095.
      View in: PubMed
    126. Monovich L, Vega RB, Meredith E, Miranda K, Rao C, Capparelli M, Lemon DD, Phan D, Koch KA, Chapo JA, Hood DB, McKinsey TA. A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase. FEBS Lett. 2010 Feb 05; 584(3):631-7. PMID: 20018189.
      View in: PubMed
    127. Calalb MB, McKinsey TA, Newkirk S, Huynh K, Sucharov CC, Bristow MR. Increased phosphorylation-dependent nuclear export of class II histone deacetylases in failing human heart. Clin Transl Sci. 2009 Oct; 2(5):325-32. PMID: 20443916.
      View in: PubMed
    128. Bush EW, McKinsey TA. Targeting histone deacetylases for heart failure. Expert Opin Ther Targets. 2009 Jul; 13(7):767-84. PMID: 19466913.
      View in: PubMed
    129. Monovich L, Koch KA, Burgis R, Osimboni E, Mann T, Wall D, Gao J, Feng Y, Vega RB, Turner BA, Hood DB, Law A, Papst PJ, Koditek D, Chapo JA, Reid BG, Melvin LS, Pagratis NC, McKinsey TA. Suppression of HDAC nuclear export and cardiomyocyte hypertrophy by novel irreversible inhibitors of CRM1. Biochim Biophys Acta. 2009 May; 1789(5):422-31. PMID: 19414071.
      View in: PubMed
    130. Sucharov CC, Dockstader K, McKinsey TA. YY1 protects cardiac myocytes from pathologic hypertrophy by interacting with HDAC5. Mol Biol Cell. 2008 Oct; 19(10):4141-53. PMID: 18632988.
      View in: PubMed
    131. Kim MS, Fielitz J, McAnally J, Shelton JM, Lemon DD, McKinsey TA, Richardson JA, Bassel-Duby R, Olson EN. Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Mol Cell Biol. 2008 Jun; 28(11):3600-9. PMID: 18378694.
      View in: PubMed
    132. Renthal W, Maze I, Krishnan V, Covington HE, Xiao G, Kumar A, Russo SJ, Graham A, Tsankova N, Kippin TE, Kerstetter KA, Neve RL, Haggarty SJ, McKinsey TA, Bassel-Duby R, Olson EN, Nestler EJ. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron. 2007 Nov 08; 56(3):517-29. PMID: 17988634.
      View in: PubMed
    133. Xu X, Ha CH, Wong C, Wang W, Hausser A, Pfizenmaier K, Olson EN, McKinsey TA, Jin ZG. Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol. 2007 Nov; 27(11):2355-62. PMID: 17823368.
      View in: PubMed
    134. McKinsey TA, Kass DA. Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov. 2007 Aug; 6(8):617-35. PMID: 17643091.
      View in: PubMed
    135. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem. 2006 Nov 03; 281(44):33487-96. PMID: 16950785.
      View in: PubMed
    136. Matthews SA, Liu P, Spitaler M, Olson EN, McKinsey TA, Cantrell DA, Scharenberg AM. Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol. 2006 Feb; 26(4):1569-77. PMID: 16449666.
      View in: PubMed
    137. McKinsey TA, Kuwahara K, Bezprozvannaya S, Olson EN. Class II histone deacetylases confer signal responsiveness to the ankyrin-repeat proteins ANKRA2 and RFXANK. Mol Biol Cell. 2006 Jan; 17(1):438-47. PMID: 16236793.
      View in: PubMed
    138. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest. 2005 Mar; 115(3):538-46. PMID: 15765135.
      View in: PubMed
    139. Parra M, Kasler H, McKinsey TA, Olson EN, Verdin E. Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. J Biol Chem. 2005 Apr 08; 280(14):13762-70. PMID: 15623513.
      View in: PubMed
    140. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004 Oct; 24(19):8467-76. PMID: 15367668.
      View in: PubMed
    141. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004 Oct; 24(19):8374-85. PMID: 15367659.
      View in: PubMed
    142. McKinsey TA, Olson EN. Cardiac histone acetylation--therapeutic opportunities abound. Trends Genet. 2004 Apr; 20(4):206-13. PMID: 15041175.
      View in: PubMed
    143. Bush E, Fielitz J, Melvin L, Martinez-Arnold M, McKinsey TA, Plichta R, Olson EN. A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc Natl Acad Sci U S A. 2004 Mar 02; 101(9):2870-5. PMID: 14976250.
      View in: PubMed
    144. McKinsey TA, Olson EN. Dual roles of histone deacetylases in the control of cardiac growth. Novartis Found Symp. 2004; 259:132-41; discussion 141-5, 163-9. PMID: 15171251.
      View in: PubMed
    145. Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol. 2002 Oct; 22(20):7302-12. PMID: 12242305.
      View in: PubMed
    146. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002 Aug 23; 110(4):479-88. PMID: 12202037.
      View in: PubMed
    147. Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):907-12. PMID: 11782539.
      View in: PubMed
    148. McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol. 2001 Sep; 21(18):6312-21. PMID: 11509672.
      View in: PubMed
    149. Zhang CL, McKinsey TA, Olson EN. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A. 2001 Jun 19; 98(13):7354-9. PMID: 11390982.
      View in: PubMed
    150. Zhang CL, McKinsey TA, Lu JR, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem. 2001 Jan 05; 276(1):35-9. PMID: 11022042.
      View in: PubMed
    151. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A. 2000 Dec 19; 97(26):14400-5. PMID: 11114197.
      View in: PubMed
    152. Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, Bassel-Duby R, Williams RS. Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ Res. 2000 Dec 08; 87(12):E61-8. PMID: 11110780.
      View in: PubMed
    153. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000 Nov 02; 408(6808):106-11. PMID: 11081517.
      View in: PubMed
    154. Frey N, McKinsey TA, Olson EN. Decoding calcium signals involved in cardiac growth and function. Nat Med. 2000 Nov; 6(11):1221-7. PMID: 11062532.
      View in: PubMed
    155. McKinsey TA, Chu Z, Tedder TF, Ballard DW. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol. 2000 Aug-Sep; 37(12-13):783-8. PMID: 11275263.
      View in: PubMed
    156. Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, Williams RS. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 2000 May 02; 19(9):1963-73. PMID: 10790363.
      View in: PubMed
    157. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest. 2000 May; 105(10):1395-406. PMID: 10811847.
      View in: PubMed
    158. Lu JR, McKinsey TA, Xu H, Wang DZ, Richardson JA, Olson EN. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol. 1999 Jun; 19(6):4495-502. PMID: 10330188.
      View in: PubMed
    159. McKinsey TA, Olson EN. Cardiac hypertrophy: sorting out the circuitry. Curr Opin Genet Dev. 1999 Jun; 9(3):267-74. PMID: 10377279.
      View in: PubMed
    160. Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF. Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res. 1999 Apr 02; 84(6):735-40. PMID: 10189362.
      View in: PubMed
    161. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A. 1997 Sep 16; 94(19):10057-62. PMID: 9294162.
      View in: PubMed
    162. McKinsey TA, Chu ZL, Ballard DW. Phosphorylation of the PEST domain of IkappaBbeta regulates the function of NF-kappaB/IkappaBbeta complexes. J Biol Chem. 1997 Sep 05; 272(36):22377-80. PMID: 9278383.
      View in: PubMed
    163. Sachdev S, Diehl JA, McKinsey TA, Hans A, Hannink M. A threshold nuclear level of the v-Rel oncoprotein is required for transformation of avian lymphocytes. Oncogene. 1997 May 29; 14(21):2585-94. PMID: 9191058.
      View in: PubMed
    164. Chu ZL, McKinsey TA, Liu L, Qi X, Ballard DW. Basal phosphorylation of the PEST domain in the I(kappa)B(beta) regulates its functional interaction with the c-rel proto-oncogene product. Mol Cell Biol. 1996 Nov; 16(11):5974-84. PMID: 8887627.
      View in: PubMed
    165. McKinsey TA, Brockman JA, Scherer DC, Al-Murrani SW, Green PL, Ballard DW. Inactivation of IkappaBbeta by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kappaB. Mol Cell Biol. 1996 May; 16(5):2083-90. PMID: 8628274.
      View in: PubMed
    166. Sorkin A, McKinsey T, Shih W, Kirchhausen T, Carpenter G. Stoichiometric interaction of the epidermal growth factor receptor with the clathrin-associated protein complex AP-2. J Biol Chem. 1995 Jan 13; 270(2):619-25. PMID: 7822287.
      View in: PubMed
    167. Diehl JA, McKinsey TA, Hannink M. Differential pp40I kappa B-beta inhibition of DNA binding by rel proteins. Mol Cell Biol. 1993 Mar; 13(3):1769-78. PMID: 8441412.
      View in: PubMed
    McKinsey's Networks
    Click the "See All" links for more information and interactive visualizations!
    Concepts Expand Description
    _
    Co-Authors Expand Description
    _
    Similar People Expand Description
    _
    Same Department Expand Description

    Copyright © 2022 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)