Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Connection

Thomas Cech to Plasmids

This is a "connection" page, showing publications Thomas Cech has written about Plasmids.

 
Connection Strength
 
 
 
0.364
 
  1. Mozdy AD, Podell ER, Cech TR. Multiple yeast genes, including Paf1 complex genes, affect telomere length via telomerase RNA abundance. Mol Cell Biol. 2008 Jun; 28(12):4152-61.
    View in: PubMed
    Score: 0.071
  2. Cech TR. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep. 2004 Aug-Oct; 24(4-5):362-85.
    View in: PubMed
    Score: 0.055
  3. Haering CH, Nakamura TM, Baumann P, Cech TR. Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomycespombe. Proc Natl Acad Sci U S A. 2000 Jun 06; 97(12):6367-72.
    View in: PubMed
    Score: 0.041
  4. Zaug AJ, McEvoy MM, Cech TR. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem. Biochemistry. 1993 Aug 10; 32(31):7946-53.
    View in: PubMed
    Score: 0.026
  5. Fang G, Gray JT, Cech TR. Oxytricha telomere-binding protein: separable DNA-binding and dimerization domains of the alpha-subunit. Genes Dev. 1993 May; 7(5):870-82.
    View in: PubMed
    Score: 0.025
  6. Young B, Herschlag D, Cech TR. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell. 1991 Nov 29; 67(5):1007-19.
    View in: PubMed
    Score: 0.023
  7. Woodson SA, Cech TR. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry. 1991 Feb 26; 30(8):2042-50.
    View in: PubMed
    Score: 0.022
  8. Flor PJ, Flanegan JB, Cech TR. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing. EMBO J. 1989 Nov; 8(11):3391-9.
    View in: PubMed
    Score: 0.020
  9. Price JV, Cech TR. Determinants of the 3' splice site for self-splicing of the Tetrahymena pre-rRNA. Genes Dev. 1988 Nov; 2(11):1439-47.
    View in: PubMed
    Score: 0.018
  10. Price JV, Engberg J, Cech TR. 5' exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5' splice site in the 3' exon. J Mol Biol. 1987 Jul 05; 196(1):49-60.
    View in: PubMed
    Score: 0.017
  11. Price JV, Cech TR. Coupling of Tetrahymena ribosomal RNA splicing to beta-galactosidase expression in Escherichia coli. Science. 1985 May 10; 228(4700):719-22.
    View in: PubMed
    Score: 0.015
  12. Brehm SL, Cech TR. Fate of an intervening sequence ribonucleic acid: excision and cyclization of the Tetrahymena ribosomal ribonucleic acid intervening sequence in vivo. Biochemistry. 1983 May 10; 22(10):2390-7.
    View in: PubMed
    Score: 0.013
  13. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982 Nov; 31(1):147-57.
    View in: PubMed
    Score: 0.012
  14. Doudna JA, Cech TR, Sullenger BA. Selection of an RNA molecule that mimics a major autoantigenic epitope of human insulin receptor. Proc Natl Acad Sci U S A. 1995 Mar 14; 92(6):2355-9.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)