Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Connection

Thomas Cech to Substrate Specificity

This is a "connection" page, showing publications Thomas Cech has written about Substrate Specificity.

 
Connection Strength
 
 
 
0.970
 
  1. Nandakumar J, Podell ER, Cech TR. How telomeric protein POT1 avoids RNA to achieve specificity for single-stranded DNA. Proc Natl Acad Sci U S A. 2010 Jan 12; 107(2):651-6.
    View in: PubMed
    Score: 0.079
  2. Lei M, Zaug AJ, Podell ER, Cech TR. Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem. 2005 May 27; 280(21):20449-56.
    View in: PubMed
    Score: 0.057
  3. Guo F, Gooding AR, Cech TR. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell. 2004 Nov 05; 16(3):351-62.
    View in: PubMed
    Score: 0.056
  4. Lei M, Podell ER, Baumann P, Cech TR. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature. 2003 Nov 13; 426(6963):198-203.
    View in: PubMed
    Score: 0.052
  5. Doudna JA, Cech TR. The chemical repertoire of natural ribozymes. Nature. 2002 Jul 11; 418(6894):222-8.
    View in: PubMed
    Score: 0.047
  6. Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001 May 11; 292(5519):1171-5.
    View in: PubMed
    Score: 0.044
  7. Silverman SK, Cech TR. RNA tertiary folding monitored by fluorescence of covalently attached pyrene. Biochemistry. 1999 Oct 26; 38(43):14224-37.
    View in: PubMed
    Score: 0.039
  8. Zhang B, Cech TR. Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem Biol. 1998 Oct; 5(10):539-53.
    View in: PubMed
    Score: 0.036
  9. Zhang B, Cech TR. Peptide bond formation by in vitro selected ribozymes. Nature. 1997 Nov 06; 390(6655):96-100.
    View in: PubMed
    Score: 0.034
  10. Lingner J, Cech TR. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3' overhang. Proc Natl Acad Sci U S A. 1996 Oct 01; 93(20):10712-7.
    View in: PubMed
    Score: 0.032
  11. Strobel SA, Cech TR. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Biochemistry. 1996 Jan 30; 35(4):1201-11.
    View in: PubMed
    Score: 0.030
  12. Campbell TB, Cech TR. Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA. RNA. 1995 Aug; 1(6):598-609.
    View in: PubMed
    Score: 0.029
  13. Zaug AJ, D?vila-Aponte JA, Cech TR. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Biochemistry. 1994 Dec 13; 33(49):14935-47.
    View in: PubMed
    Score: 0.028
  14. Herschlag D, Eckstein F, Cech TR. Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA. Biochemistry. 1993 Aug 17; 32(32):8299-311.
    View in: PubMed
    Score: 0.026
  15. Herschlag D, Eckstein F, Cech TR. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry. 1993 Aug 17; 32(32):8312-21.
    View in: PubMed
    Score: 0.026
  16. Legault P, Herschlag D, Celander DW, Cech TR. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis. Nucleic Acids Res. 1992 Dec 25; 20(24):6613-9.
    View in: PubMed
    Score: 0.024
  17. Cech TR, Herschlag D, Piccirilli JA, Pyle AM. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. J Biol Chem. 1992 Sep 05; 267(25):17479-82.
    View in: PubMed
    Score: 0.024
  18. Pyle AM, Murphy FL, Cech TR. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature. 1992 Jul 09; 358(6382):123-8.
    View in: PubMed
    Score: 0.024
  19. Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech TR. Aminoacyl esterase activity of the Tetrahymena ribozyme. Science. 1992 Jun 05; 256(5062):1420-4.
    View in: PubMed
    Score: 0.024
  20. Young B, Herschlag D, Cech TR. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell. 1991 Nov 29; 67(5):1007-19.
    View in: PubMed
    Score: 0.023
  21. Pyle AM, Cech TR. Ribozyme recognition of RNA by tertiary interactions with specific ribose 2'-OH groups. Nature. 1991 Apr 18; 350(6319):628-31.
    View in: PubMed
    Score: 0.022
  22. Herschlag D, Cech TR. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry. 1990 Nov 06; 29(44):10159-71.
    View in: PubMed
    Score: 0.021
  23. Herschlag D, Cech TR. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry. 1990 Nov 06; 29(44):10172-80.
    View in: PubMed
    Score: 0.021
  24. Latham JA, Zaug AJ, Cech TR. Self-splicing and enzymatic cleavage of RNA by a group I intervening sequence. Methods Enzymol. 1990; 181:558-69.
    View in: PubMed
    Score: 0.020
  25. Murphy FL, Cech TR. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme. Proc Natl Acad Sci U S A. 1989 Dec; 86(23):9218-22.
    View in: PubMed
    Score: 0.020
  26. Young B, Cech TR. Specificity for 3',5'-linked substrates in RNA-catalyzed RNA polymerization. J Mol Evol. 1989 Dec; 29(6):480-5.
    View in: PubMed
    Score: 0.020
  27. Grosshans CA, Cech TR. Metal ion requirements for sequence-specific endoribonuclease activity of the Tetrahymena ribozyme. Biochemistry. 1989 Aug 22; 28(17):6888-94.
    View in: PubMed
    Score: 0.019
  28. Zaug AJ, Been MD, Cech TR. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature. 1986 Dec 4-10; 324(6096):429-33.
    View in: PubMed
    Score: 0.016
  29. Been MD, Cech TR. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell. 1986 Oct 24; 47(2):207-16.
    View in: PubMed
    Score: 0.016
  30. Zaug AJ, Cech TR. The Tetrahymena intervening sequence ribonucleic acid enzyme is a phosphotransferase and an acid phosphatase. Biochemistry. 1986 Aug 12; 25(16):4478-82.
    View in: PubMed
    Score: 0.016
  31. Cech TR. Biologic catalysis by RNA. Harvey Lect. 1986-1987; 82:123-44.
    View in: PubMed
    Score: 0.015
  32. Classen S, Lyons D, Cech TR, Schultz SC. Sequence-specific and 3'-end selective single-strand DNA binding by the Oxytricha nova telomere end binding protein alpha subunit. Biochemistry. 2003 Aug 12; 42(31):9269-77.
    View in: PubMed
    Score: 0.013
  33. F?rstemann K, Zaug AJ, Cech TR, Lingner J. Yeast telomerase is specialized for C/A-rich RNA templates. Nucleic Acids Res. 2003 Mar 15; 31(6):1646-55.
    View in: PubMed
    Score: 0.012
  34. McConnell TS, Cech TR, Herschlag D. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. Proc Natl Acad Sci U S A. 1993 Sep 15; 90(18):8362-6.
    View in: PubMed
    Score: 0.006
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)