Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Connection

Thomas Cech to Introns

This is a "connection" page, showing publications Thomas Cech has written about Introns.

 
Connection Strength
 
 
 
4.667
 
  1. Vicens Q, Paukstelis PJ, Westhof E, Lambowitz AM, Cech TR. Toward predicting self-splicing and protein-facilitated splicing of group I introns. RNA. 2008 Oct; 14(10):2013-29.
    View in: PubMed
    Score: 0.280
  2. Vicens Q, Cech TR. Atomic level architecture of group I introns revealed. Trends Biochem Sci. 2006 Jan; 31(1):41-51.
    View in: PubMed
    Score: 0.231
  3. Cech TR. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep. 2004 Aug-Oct; 24(4-5):362-85.
    View in: PubMed
    Score: 0.211
  4. Guo F, Cech TR. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron. RNA. 2002 May; 8(5):647-58.
    View in: PubMed
    Score: 0.180
  5. Golden BL, Podell ER, Gooding AR, Cech TR. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J Mol Biol. 1997 Aug 01; 270(5):711-23.
    View in: PubMed
    Score: 0.130
  6. Tanner MA, Cech TR. Joining the two domains of a group I ribozyme to form the catalytic core. Science. 1997 Feb 07; 275(5301):847-9.
    View in: PubMed
    Score: 0.125
  7. Weeks KM, Cech TR. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science. 1996 Jan 19; 271(5247):345-8.
    View in: PubMed
    Score: 0.117
  8. Weeks KM, Cech TR. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain. Cell. 1995 Jul 28; 82(2):221-30.
    View in: PubMed
    Score: 0.113
  9. Tanner MA, Cech TR. An important RNA tertiary interaction of group I and group II introns is implicated in gram-positive RNase P RNAs. RNA. 1995 Jun; 1(4):349-50.
    View in: PubMed
    Score: 0.112
  10. Cech T. Group I introns: new molecular mechanisms for mRNA repair. Biotechnology (N Y). 1995 Apr; 13(4):323-6.
    View in: PubMed
    Score: 0.110
  11. Doudna JA, Cech TR. Self-assembly of a group I intron active site from its component tertiary structural domains. RNA. 1995 Mar; 1(1):36-45.
    View in: PubMed
    Score: 0.110
  12. Zaug AJ, D?vila-Aponte JA, Cech TR. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Biochemistry. 1994 Dec 13; 33(49):14935-47.
    View in: PubMed
    Score: 0.108
  13. Downs WD, Cech TR. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site. Genes Dev. 1994 May 15; 8(10):1198-211.
    View in: PubMed
    Score: 0.104
  14. Cech TR, Damberger SH, Gutell RR. Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol. 1994 May; 1(5):273-80.
    View in: PubMed
    Score: 0.103
  15. Murphy FL, Cech TR. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol. 1994 Feb 11; 236(1):49-63.
    View in: PubMed
    Score: 0.102
  16. Zaug AJ, McEvoy MM, Cech TR. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem. Biochemistry. 1993 Aug 10; 32(31):7946-53.
    View in: PubMed
    Score: 0.098
  17. Zaug AJ, Cech TR. The intervening sequence RNA of Tetrahymena is an enzyme. 1986. Biotechnology. 1992; 24:57-62.
    View in: PubMed
    Score: 0.088
  18. Heuer TS, Chandry PS, Belfort M, Celander DW, Cech TR. Folding of group I introns from bacteriophage T4 involves internalization of the catalytic core. Proc Natl Acad Sci U S A. 1991 Dec 15; 88(24):11105-9.
    View in: PubMed
    Score: 0.088
  19. Gampel A, Cech TR. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA. Genes Dev. 1991 Oct; 5(10):1870-80.
    View in: PubMed
    Score: 0.087
  20. D?vila-Aponte JA, Huss VA, Sogin ML, Cech TR. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus. Nucleic Acids Res. 1991 Aug 25; 19(16):4429-36.
    View in: PubMed
    Score: 0.086
  21. Woodson SA, Cech TR. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry. 1991 Feb 26; 30(8):2042-50.
    View in: PubMed
    Score: 0.083
  22. Cech TR. RNA editing: world's smallest introns? Cell. 1991 Feb 22; 64(4):667-9.
    View in: PubMed
    Score: 0.083
  23. Cech TR. Self-splicing of group I introns. Annu Rev Biochem. 1990; 59:543-68.
    View in: PubMed
    Score: 0.077
  24. Latham JA, Zaug AJ, Cech TR. Self-splicing and enzymatic cleavage of RNA by a group I intervening sequence. Methods Enzymol. 1990; 181:558-69.
    View in: PubMed
    Score: 0.077
  25. Flor PJ, Flanegan JB, Cech TR. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing. EMBO J. 1989 Nov; 8(11):3391-9.
    View in: PubMed
    Score: 0.076
  26. Woodson SA, Cech TR. Reverse self-splicing of the tetrahymena group I intron: implication for the directionality of splicing and for intron transposition. Cell. 1989 Apr 21; 57(2):335-45.
    View in: PubMed
    Score: 0.073
  27. Vicens Q, Cech TR. A natural ribozyme with 3',5' RNA ligase activity. Nat Chem Biol. 2009 Feb; 5(2):97-9.
    View in: PubMed
    Score: 0.072
  28. Cech TR. Conserved sequences and structures of group I introns: building an active site for RNA catalysis--a review. Gene. 1988 Dec 20; 73(2):259-71.
    View in: PubMed
    Score: 0.071
  29. Barfod ET, Cech TR. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity. Genes Dev. 1988 Jun; 2(6):652-63.
    View in: PubMed
    Score: 0.069
  30. Vicens Q, Gooding AR, Laederach A, Cech TR. Local RNA structural changes induced by crystallization are revealed by SHAPE. RNA. 2007 Apr; 13(4):536-48.
    View in: PubMed
    Score: 0.063
  31. Zaug AJ, Cech TR. The Tetrahymena intervening sequence ribonucleic acid enzyme is a phosphotransferase and an acid phosphatase. Biochemistry. 1986 Aug 12; 25(16):4478-82.
    View in: PubMed
    Score: 0.061
  32. Cech TR. Ribozymes, the first 20 years. Biochem Soc Trans. 2002 Nov; 30(Pt 6):1162-6.
    View in: PubMed
    Score: 0.047
  33. Doudna JA, Cech TR. The chemical repertoire of natural ribozymes. Nature. 2002 Jul 11; 418(6894):222-8.
    View in: PubMed
    Score: 0.046
  34. Dumbovic G, Braunschweig U, Langner HK, Smallegan M, Biayna J, Hass EP, Jastrzebska K, Blencowe B, Cech TR, Caruthers MH, Rinn JL. Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention. Nat Commun. 2021 06 03; 12(1):3308.
    View in: PubMed
    Score: 0.042
  35. Silverman SK, Deras ML, Woodson SA, Scaringe SA, Cech TR. Multiple folding pathways for the P4-P6 RNA domain. Biochemistry. 2000 Oct 10; 39(40):12465-75.
    View in: PubMed
    Score: 0.040
  36. Silverman SK, Zheng M, Wu M, Tinoco I, Cech TR. Quantifying the energetic interplay of RNA tertiary and secondary structure interactions. RNA. 1999 Dec; 5(12):1665-74.
    View in: PubMed
    Score: 0.038
  37. Hagen M, Cech TR. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells. EMBO J. 1999 Nov 15; 18(22):6491-500.
    View in: PubMed
    Score: 0.038
  38. Silverman SK, Cech TR. RNA tertiary folding monitored by fluorescence of covalently attached pyrene. Biochemistry. 1999 Oct 26; 38(43):14224-37.
    View in: PubMed
    Score: 0.038
  39. Golden BL, Gooding AR, Podell ER, Cech TR. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 09; 282(5387):259-64.
    View in: PubMed
    Score: 0.035
  40. Bryan TM, Sperger JM, Chapman KB, Cech TR. Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax. Proc Natl Acad Sci U S A. 1998 Jul 21; 95(15):8479-84.
    View in: PubMed
    Score: 0.035
  41. Jabri E, Aigner S, Cech TR. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis. Biochemistry. 1997 Dec 23; 36(51):16345-54.
    View in: PubMed
    Score: 0.033
  42. Tanner MA, Anderson EM, Gutell RR, Cech TR. Mutagenesis and comparative sequence analysis of a base triple joining the two domains of group I ribozymes. RNA. 1997 Sep; 3(9):1037-51.
    View in: PubMed
    Score: 0.033
  43. Weinstein LB, Jones BC, Cosstick R, Cech TR. A second catalytic metal ion in group I ribozyme. Nature. 1997 Aug 21; 388(6644):805-8.
    View in: PubMed
    Score: 0.033
  44. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997 Aug 15; 277(5328):955-9.
    View in: PubMed
    Score: 0.032
  45. Szewczak AA, Cech TR. An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis. RNA. 1997 Aug; 3(8):838-49.
    View in: PubMed
    Score: 0.032
  46. Kuo LY, Cech TR. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes. Nucleic Acids Res. 1996 Oct 01; 24(19):3722-7.
    View in: PubMed
    Score: 0.031
  47. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20; 273(5282):1678-85.
    View in: PubMed
    Score: 0.031
  48. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Szewczak AA, Kundrot CE, Cech TR, Doudna JA. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20; 273(5282):1696-9.
    View in: PubMed
    Score: 0.031
  49. Golden BL, Cech TR. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Biochemistry. 1996 Mar 26; 35(12):3754-63.
    View in: PubMed
    Score: 0.030
  50. Strobel SA, Cech TR. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Biochemistry. 1996 Jan 30; 35(4):1201-11.
    View in: PubMed
    Score: 0.029
  51. Tanner M, Cech T. Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. RNA. 1996 Jan; 2(1):74-83.
    View in: PubMed
    Score: 0.029
  52. Weeks KM, Cech TR. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Biochemistry. 1995 Jun 13; 34(23):7728-38.
    View in: PubMed
    Score: 0.028
  53. Zaug AJ, Cech TR. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA. 1995 Jun; 1(4):363-74.
    View in: PubMed
    Score: 0.028
  54. Strobel SA, Cech TR. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site. Science. 1995 Feb 03; 267(5198):675-9.
    View in: PubMed
    Score: 0.027
  55. Pyle AM, Moran S, Strobel SA, Chapman T, Turner DH, Cech TR. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity. Biochemistry. 1994 Nov 22; 33(46):13856-63.
    View in: PubMed
    Score: 0.027
  56. Sullenger BA, Cech TR. Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. 1994 Oct 13; 371(6498):619-22.
    View in: PubMed
    Score: 0.027
  57. Murphy FL, Wang YH, Griffith JD, Cech TR. Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme. Science. 1994 Sep 16; 265(5179):1709-12.
    View in: PubMed
    Score: 0.027
  58. Wang YH, Murphy FL, Cech TR, Griffith JD. Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy. J Mol Biol. 1994 Feb 11; 236(1):64-71.
    View in: PubMed
    Score: 0.025
  59. Strobel SA, Cech TR. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry. 1993 Dec 14; 32(49):13593-604.
    View in: PubMed
    Score: 0.025
  60. Piccirilli JA, Vyle JS, Caruthers MH, Cech TR. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 07; 361(6407):85-8.
    View in: PubMed
    Score: 0.024
  61. Legault P, Herschlag D, Celander DW, Cech TR. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis. Nucleic Acids Res. 1992 Dec 25; 20(24):6613-9.
    View in: PubMed
    Score: 0.024
  62. Cech TR, Herschlag D, Piccirilli JA, Pyle AM. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. J Biol Chem. 1992 Sep 05; 267(25):17479-82.
    View in: PubMed
    Score: 0.023
  63. Pyle AM, Murphy FL, Cech TR. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature. 1992 Jul 09; 358(6382):123-8.
    View in: PubMed
    Score: 0.023
  64. Herschlag D, Cech TR. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry. 1990 Nov 06; 29(44):10159-71.
    View in: PubMed
    Score: 0.020
  65. Cech TR. Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep. 1990 Jun; 10(3):239-61.
    View in: PubMed
    Score: 0.020
  66. Hicke BJ, Celander DW, MacDonald GH, Price CM, Cech TR. Two versions of the gene encoding the 41-kilodalton subunit of the telomere binding protein of Oxytricha nova. Proc Natl Acad Sci U S A. 1990 Feb; 87(4):1481-5.
    View in: PubMed
    Score: 0.019
  67. Murphy FL, Cech TR. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme. Proc Natl Acad Sci U S A. 1989 Dec; 86(23):9218-22.
    View in: PubMed
    Score: 0.019
  68. Yarus M, Levine J, Morin GB, Cech TR. A Tetrahymena intron nucleotide connected to the GTP/arginine site. Nucleic Acids Res. 1989 Sep 12; 17(17):6969-81.
    View in: PubMed
    Score: 0.019
  69. Barfod ET, Cech TR. The conserved U.G pair in the 5' splice site duplex of a group I intron is required in the first but not the second step of self-splicing. Mol Cell Biol. 1989 Sep; 9(9):3657-66.
    View in: PubMed
    Score: 0.019
  70. Cech TR. RNA as an enzyme. Biochem Int. 1989 Jan; 18(1):7-14.
    View in: PubMed
    Score: 0.018
  71. Cech TR. Ribozymes and their medical implications. JAMA. 1988 Nov 25; 260(20):3030-4.
    View in: PubMed
    Score: 0.018
  72. Price JV, Cech TR. Determinants of the 3' splice site for self-splicing of the Tetrahymena pre-rRNA. Genes Dev. 1988 Nov; 2(11):1439-47.
    View in: PubMed
    Score: 0.018
  73. Zaug AJ, Cech TR. Self-splicing RNA and an RNA enzyme in Tetrahymena. J Protozool. 1987 Nov; 34(4):416-7.
    View in: PubMed
    Score: 0.016
  74. Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF. Structural conventions for group I introns. Nucleic Acids Res. 1987 Sep 25; 15(18):7217-21.
    View in: PubMed
    Score: 0.016
  75. Been MD, Cech TR. Selection of circularization sites in a group I IVS RNA requires multiple alignments of an internal template-like sequence. Cell. 1987 Sep 11; 50(6):951-61.
    View in: PubMed
    Score: 0.016
  76. Cech TR. RNA as an enzyme. Sci Am. 1986 Nov; 255(5):64-75.
    View in: PubMed
    Score: 0.015
  77. Been MD, Cech TR. One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell. 1986 Oct 24; 47(2):207-16.
    View in: PubMed
    Score: 0.015
  78. Cech TR. Biologic catalysis by RNA. Harvey Lect. 1986-1987; 82:123-44.
    View in: PubMed
    Score: 0.015
  79. Cech TR, Zaug AJ, Grabowski PJ. In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell. 1981 Dec; 27(3 Pt 2):487-96.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)