Retinal Rod Photoreceptor Cells
"Retinal Rod Photoreceptor Cells" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination.
Descriptor ID |
D017948
|
MeSH Number(s) |
A08.675.650.850.625.670.650 A08.675.650.915.937.670.650 A08.800.950.937.670.650 A09.371.729.831.625.670.650 A11.671.650.850.625.670.650 A11.671.650.915.937.670.650
|
Concept/Terms |
Retinal Rod Photoreceptor Cells- Retinal Rod Photoreceptor Cells
- Retinal Rod
- Retinal Rods
- Rod, Retinal
- Rods, Retinal
- Photoreceptors, Rod
- Photoreceptor, Rod
- Rod Photoreceptor
- Rod Photoreceptors
- Rod Photoreceptor Cells
- Cell, Rod Photoreceptor
- Cells, Rod Photoreceptor
- Photoreceptor Cell, Rod
- Photoreceptor Cells, Rod
- Rod Photoreceptor Cell
- Retinal Rod Photoreceptors
- Retinal Rod Cells
- Cell, Retinal Rod
- Cells, Retinal Rod
- Rod Cell, Retinal
- Rod Cells, Retinal
- Retinal Rod Photoreceptor
- Photoreceptor, Retinal Rod
- Photoreceptors, Retinal Rod
- Rod Photoreceptor, Retinal
- Rod Photoreceptors, Retinal
- Rods (Retina)
- Rod (Retina)
|
Below are MeSH descriptors whose meaning is more general than "Retinal Rod Photoreceptor Cells".
Below are MeSH descriptors whose meaning is more specific than "Retinal Rod Photoreceptor Cells".
This graph shows the total number of publications written about "Retinal Rod Photoreceptor Cells" by people in this website by year, and whether "Retinal Rod Photoreceptor Cells" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
2003 | 1 | 0 | 1 | 2004 | 1 | 0 | 1 | 2006 | 1 | 0 | 1 | 2007 | 0 | 1 | 1 | 2008 | 1 | 0 | 1 | 2009 | 0 | 1 | 1 | 2012 | 0 | 1 | 1 | 2013 | 0 | 1 | 1 | 2018 | 3 | 0 | 3 |
To return to the timeline, click here.
Below are the most recent publications written about "Retinal Rod Photoreceptor Cells" by people in Profiles.
-
Travis AM, Manocha S, Willer JR, Wessler TS, Skiba NP, Pearring JN. Disrupting the ciliary gradient of active Arl3 affects rod photoreceptor nuclear migration. Elife. 2023 01 04; 12.
-
Bell WR, Meeker AK, Rizzo A, Rajpara S, Rosenthal IM, Flores Bellver M, Aparicio Domingo S, Zhong X, Barber JR, Joshu CE, Canto-Soler MV, Eberhart CG, Heaphy CM. A unique telomere DNA expansion phenotype in human retinal rod photoreceptors associated with aging and disease. Brain Pathol. 2019 01; 29(1):45-52.
-
Bonezzi PJ, Stabio ME, Renna JM. The Development of Mid-Wavelength Photoresponsivity in the Mouse Retina. Curr Eye Res. 2018 05; 43(5):666-673.
-
Kim MK, Aung MH, Mees L, Olson DE, Pozdeyev N, Iuvone PM, Thule PM, Pardue MT. Dopamine Deficiency Mediates Early Rod-Driven Inner Retinal Dysfunction in Diabetic Mice. Invest Ophthalmol Vis Sci. 2018 01 01; 59(1):572-581.
-
Baid R, Upadhyay AK, Shinohara T, Kompella UB. Biosynthesis, characterization, and efficacy in retinal degenerative diseases of lens epithelium-derived growth factor fragment (LEDGF1-326), a novel therapeutic protein. J Biol Chem. 2013 Jun 14; 288(24):17372-83.
-
Peachey NS, Ray TA, Florijn R, Rowe LB, Sjoerdsma T, Contreras-Alcantara S, Baba K, Tosini G, Pozdeyev N, Iuvone PM, Bojang P, Pearring JN, Simonsz HJ, van Genderen M, Birch DG, Traboulsi EI, Dorfman A, Lopez I, Ren H, Goldberg AF, Nishina PM, Lachapelle P, McCall MA, Koenekoop RK, Bergen AA, Kamermans M, Gregg RG. GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet. 2012 Feb 10; 90(2):331-9.
-
Naarendorp F, Esdaille TM, Banden SM, Andrews-Labenski J, Gross OP, Pugh EN. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision. J Neurosci. 2010 Sep 15; 30(37):12495-507.
-
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009 Oct; 27(10):2427-34.
-
Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci. 2009 Feb; 29(4):761-7.
-
Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol. 2008 Oct 15; 586(20):4859-75.
|
People People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|