Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Connection

Thomas Cech to Magnesium

This is a "connection" page, showing publications Thomas Cech has written about Magnesium.

 
Connection Strength
 
 
 
0.915
 
  1. Guo F, Gooding AR, Cech TR. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell. 2004 Nov 05; 16(3):351-62.
    View in: PubMed
    Score: 0.224
  2. McConnell TS, Herschlag D, Cech TR. Effects of divalent metal ions on individual steps of the Tetrahymena ribozyme reaction. Biochemistry. 1997 Jul 08; 36(27):8293-303.
    View in: PubMed
    Score: 0.135
  3. Juneau K, Podell E, Harrington DJ, Cech TR. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA--solvent interactions. Structure. 2001 Mar 07; 9(3):221-31.
    View in: PubMed
    Score: 0.043
  4. Silverman SK, Cech TR. An early transition state for folding of the P4-P6 RNA domain. RNA. 2001 Feb; 7(2):161-6.
    View in: PubMed
    Score: 0.043
  5. Silverman SK, Cech TR. RNA tertiary folding monitored by fluorescence of covalently attached pyrene. Biochemistry. 1999 Oct 26; 38(43):14224-37.
    View in: PubMed
    Score: 0.040
  6. Golden BL, Gooding AR, Podell ER, Cech TR. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 09; 282(5387):259-64.
    View in: PubMed
    Score: 0.037
  7. Zhang B, Cech TR. Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem Biol. 1998 Oct; 5(10):539-53.
    View in: PubMed
    Score: 0.037
  8. Jabri E, Aigner S, Cech TR. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis. Biochemistry. 1997 Dec 23; 36(51):16345-54.
    View in: PubMed
    Score: 0.035
  9. Downs WD, Cech TR. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks. RNA. 1996 Jul; 2(7):718-32.
    View in: PubMed
    Score: 0.031
  10. Weeks KM, Cech TR. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science. 1996 Jan 19; 271(5247):345-8.
    View in: PubMed
    Score: 0.030
  11. Weeks KM, Cech TR. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Biochemistry. 1995 Jun 13; 34(23):7728-38.
    View in: PubMed
    Score: 0.029
  12. Murphy FL, Wang YH, Griffith JD, Cech TR. Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme. Science. 1994 Sep 16; 265(5179):1709-12.
    View in: PubMed
    Score: 0.028
  13. Laggerbauer B, Murphy FL, Cech TR. Two major tertiary folding transitions of the Tetrahymena catalytic RNA. EMBO J. 1994 Jun 01; 13(11):2669-76.
    View in: PubMed
    Score: 0.027
  14. Piccirilli JA, Vyle JS, Caruthers MH, Cech TR. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 07; 361(6407):85-8.
    View in: PubMed
    Score: 0.025
  15. Legault P, Herschlag D, Celander DW, Cech TR. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis. Nucleic Acids Res. 1992 Dec 25; 20(24):6613-9.
    View in: PubMed
    Score: 0.025
  16. Celander DW, Cech TR. Visualizing the higher order folding of a catalytic RNA molecule. Science. 1991 Jan 25; 251(4992):401-7.
    View in: PubMed
    Score: 0.022
  17. Pyle AM, McSwiggen JA, Cech TR. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena. Proc Natl Acad Sci U S A. 1990 Nov; 87(21):8187-91.
    View in: PubMed
    Score: 0.021
  18. Flor PJ, Flanegan JB, Cech TR. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing. EMBO J. 1989 Nov; 8(11):3391-9.
    View in: PubMed
    Score: 0.020
  19. Zaug AJ, Grosshans CA, Cech TR. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry. 1988 Dec 13; 27(25):8924-31.
    View in: PubMed
    Score: 0.019
  20. Burke JM, Irvine KD, Kaneko KJ, Kerker BJ, Oettgen AB, Tierney WM, Williamson CL, Zaug AJ, Cech TR. Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor. Cell. 1986 Apr 25; 45(2):167-76.
    View in: PubMed
    Score: 0.016
  21. Tanner NK, Cech TR. Self-catalyzed cyclization of the intervening sequence RNA of Tetrahymena: inhibition by methidiumpropyl.EDTA and localization of the major dye binding sites. Nucleic Acids Res. 1985 Nov 11; 13(21):7759-79.
    View in: PubMed
    Score: 0.015
  22. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20; 273(5282):1678-85.
    View in: PubMed
    Score: 0.008
  23. Wang YH, Murphy FL, Cech TR, Griffith JD. Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy. J Mol Biol. 1994 Feb 11; 236(1):64-71.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)