Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Connection

Stephanie Bryant to Matrix Metalloproteinases

This is a "connection" page, showing publications Stephanie Bryant has written about Matrix Metalloproteinases.

 
Connection Strength
 
 
 
2.563
 
  1. Schneider MC, Lalitha Sridhar S, Vernerey FJ, Bryant SJ. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach. J Mater Chem B. 2020 04 08; 8(14):2775-2791.
    View in: PubMed
    Score: 0.695
  2. Schneider MC, Chu S, Randolph MA, Bryant SJ. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor ?3. Acta Biomater. 2019 07 15; 93:97-110.
    View in: PubMed
    Score: 0.647
  3. Carles-Carner M, Saleh LS, Bryant SJ. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Biomed Mater. 2018 05 02; 13(4):045009.
    View in: PubMed
    Score: 0.608
  4. Nicodemus GD, Bryant SJ. Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthritis Cartilage. 2010 Jan; 18(1):126-37.
    View in: PubMed
    Score: 0.334
  5. Aziz AH, Bryant SJ. A comparison of human mesenchymal stem cell osteogenesis in poly(ethylene glycol) hydrogels as a function of MMP-sensitive crosslinker and crosslink density in chemically defined medium. Biotechnol Bioeng. 2019 06; 116(6):1523-1536.
    View in: PubMed
    Score: 0.161
  6. Skaalure SC, Radhakrishnan SM, Bryant SJ. Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels. J Biomed Mater Res A. 2015 Jun; 103(6):2186-92.
    View in: PubMed
    Score: 0.118
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2024 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)