Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Connection

Michael Klymkowsky to Animals

This is a "connection" page, showing publications Michael Klymkowsky has written about Animals.

 
Connection Strength
 
 
 
0.642
 
  1. Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res. 2019; 8.
    View in: PubMed
    Score: 0.038
  2. Klymkowsky MW. Whole-Mount Immunocytochemistry in Xenopus. Cold Spring Harb Protoc. 2018 01 02; 2018(1).
    View in: PubMed
    Score: 0.034
  3. Zhao Y, Shi J, Winey M, Klymkowsky MW. Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. Dev Biol. 2016 Mar 15; 411(2):257-265.
    View in: PubMed
    Score: 0.030
  4. Shi J, Zhao Y, Vonderfecht T, Winey M, Klymkowsky MW. Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. Sci Rep. 2015 May 27; 5:10283.
    View in: PubMed
    Score: 0.028
  5. Shi J, Zhao Y, Galati D, Winey M, Klymkowsky MW. Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. Dev Biol. 2014 Nov 15; 395(2):287-98.
    View in: PubMed
    Score: 0.027
  6. Shi J, Severson C, Yang J, Wedlich D, Klymkowsky MW. Snail2 controls mesodermal BMP/Wnt induction of neural crest. Development. 2011 Aug; 138(15):3135-45.
    View in: PubMed
    Score: 0.022
  7. Klymkowsky MW. Mitochondrial activity, embryogenesis, and the dialogue between the big and little brains of the cell. Mitochondrion. 2011 Sep; 11(5):814-9.
    View in: PubMed
    Score: 0.021
  8. Klymkowsky MW, Rossi CC, Artinger KB. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr. 2010 Oct-Dec; 4(4):595-608.
    View in: PubMed
    Score: 0.020
  9. Zhang C, Klymkowsky MW. Unexpected functional redundancy between Twist and Slug (Snail2) and their feedback regulation of NF-kappaB via Nodal and Cerberus. Dev Biol. 2009 Jul 15; 331(2):340-9.
    View in: PubMed
    Score: 0.019
  10. Zhang C, Klymkowsky MW. The Sox axis, Nodal signaling, and germ layer specification. Differentiation. 2007 Jul; 75(6):536-45.
    View in: PubMed
    Score: 0.016
  11. Zhang C, Carl TF, Trudeau ED, Simmet T, Klymkowsky MW. An NF-kappaB and slug regulatory loop active in early vertebrate mesoderm. PLoS One. 2006 Dec 27; 1:e106.
    View in: PubMed
    Score: 0.016
  12. Zhang C, Basta T, Klymkowsky MW. SOX7 and SOX18 are essential for cardiogenesis in Xenopus. Dev Dyn. 2005 Dec; 234(4):878-91.
    View in: PubMed
    Score: 0.015
  13. Klymkowsky MW. beta-catenin and its regulatory network. Hum Pathol. 2005 Mar; 36(3):225-7.
    View in: PubMed
    Score: 0.014
  14. Zhang C, Basta T, Fawcett SR, Klymkowsky MW. SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus. Dev Biol. 2005 Feb 15; 278(2):526-41.
    View in: PubMed
    Score: 0.014
  15. Zhang C, Basta T, Hernandez-Lagunas L, Simpson P, Stemple DL, Artinger KB, Klymkowsky MW. Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish. Dev Biol. 2004 Sep 01; 273(1):23-37.
    View in: PubMed
    Score: 0.013
  16. Fawcett SR, Klymkowsky MW. Embryonic expression of Xenopus laevis SOX7. Gene Expr Patterns. 2004 Jan; 4(1):29-33.
    View in: PubMed
    Score: 0.013
  17. Zhang C, Basta T, Jensen ED, Klymkowsky MW. The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development. 2003 Dec; 130(23):5609-24.
    View in: PubMed
    Score: 0.013
  18. Haubold K, Herrmann H, Langer SJ, Evans RM, Leinwand LA, Klymkowsky MW. Acute effects of desmin mutations on cytoskeletal and cellular integrity in cardiac myocytes. Cell Motil Cytoskeleton. 2003 Feb; 54(2):105-21.
    View in: PubMed
    Score: 0.012
  19. Hanken J, Carl TF, Richardson MK, Olsson L, Schlosser G, Osabutey CK, Klymkowsky MW. Limb development in a "nonmodel" vertebrate, the direct-developing frog Eleutherodactylus coqui. J Exp Zool. 2001 Dec 15; 291(4):375-88.
    View in: PubMed
    Score: 0.011
  20. St Amand AL, Klymkowsky MW. Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. Int Rev Cytol. 2001; 203:291-355.
    View in: PubMed
    Score: 0.010
  21. Klymkowsky MW, Williams BO, Barish GD, Varmus HE, Vourgourakis YE. Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling. Mol Biol Cell. 1999 Oct; 10(10):3151-69.
    View in: PubMed
    Score: 0.010
  22. Carl TF, Dufton C, Hanken J, Klymkowsky MW. Inhibition of neural crest migration in Xenopus using antisense slug RNA. Dev Biol. 1999 Sep 01; 213(1):101-15.
    View in: PubMed
    Score: 0.009
  23. Klymkowsky MW. Weaving a tangled web: the interconnected cytoskeleton. Nat Cell Biol. 1999 Sep; 1(5):E121-3.
    View in: PubMed
    Score: 0.009
  24. Klymkowsky MW. Plakophilin, armadillo repeats, and nuclear localization. Microsc Res Tech. 1999 Apr 01; 45(1):43-54.
    View in: PubMed
    Score: 0.009
  25. Gard DL, Klymkowsky MW. Intermediate filament organization during oogenesis and early development in the clawed frog, Xenopus laevis. Subcell Biochem. 1998; 31:35-70.
    View in: PubMed
    Score: 0.008
  26. Merriam JM, Rubenstein AB, Klymkowsky MW. Cytoplasmically anchored plakoglobin induces a WNT-like phenotype in Xenopus. Dev Biol. 1997 May 01; 185(1):67-81.
    View in: PubMed
    Score: 0.008
  27. Rubenstein A, Merriam J, Klymkowsky MW. Localizing the adhesive and signaling functions of plakoglobin. Dev Genet. 1997; 20(2):91-102.
    View in: PubMed
    Score: 0.008
  28. Klymkowsky MW. Intermediate filaments as dynamic structures. Cancer Metastasis Rev. 1996 Dec; 15(4):417-28.
    View in: PubMed
    Score: 0.008
  29. Bachant JB, Klymkowsky MW. A nontetrameric species is the major soluble form of keratin in Xenopus oocytes and rabbit reticulocyte lysates. J Cell Biol. 1996 Jan; 132(1-2):153-65.
    View in: PubMed
    Score: 0.007
  30. Square T, Rom?ek M, Jandzik D, Cattell MV, Klymkowsky M, Medeiros DM. CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. Development. 2015 Dec 01; 142(23):4180-7.
    View in: PubMed
    Score: 0.007
  31. Klymkowsky MW, Parr B. The body language of cells: the intimate connection between cell adhesion and behavior. Cell. 1995 Oct 06; 83(1):5-8.
    View in: PubMed
    Score: 0.007
  32. Karnovsky A, Klymkowsky MW. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc Natl Acad Sci U S A. 1995 May 09; 92(10):4522-6.
    View in: PubMed
    Score: 0.007
  33. Cary RB, Klymkowsky MW. Disruption of intermediate filament organization leads to structural defects at the intersomite junction in Xenopus myotomal muscle. Development. 1995 Apr; 121(4):1041-52.
    View in: PubMed
    Score: 0.007
  34. Klymkowsky MW. Intermediate filaments: new proteins, some answers, more questions. Curr Opin Cell Biol. 1995 Feb; 7(1):46-54.
    View in: PubMed
    Score: 0.007
  35. Klymkowsky MW. Intermediate filament organization, reorganization, and function in the clawed frog Xenopus. Curr Top Dev Biol. 1995; 31:455-86.
    View in: PubMed
    Score: 0.007
  36. Klymkowsky MW, Karnovsky A. Morphogenesis and the cytoskeleton: studies of the Xenopus embryo. Dev Biol. 1994 Oct; 165(2):372-84.
    View in: PubMed
    Score: 0.007
  37. Cary RB, Klymkowsky MW. Differential organization of desmin and vimentin in muscle is due to differences in their head domains. J Cell Biol. 1994 Jul; 126(2):445-56.
    View in: PubMed
    Score: 0.007
  38. Cary RB, Klymkowsky MW. Desmin organization during the differentiation of the dorsal myotome in Xenopus laevis. Differentiation. 1994 Apr; 56(1-2):31-8.
    View in: PubMed
    Score: 0.007
  39. Seufert DW, Hanken J, Klymkowsky MW. Type II collagen distribution during cranial development in Xenopus laevis. Anat Embryol (Berl). 1994 Jan; 189(1):81-9.
    View in: PubMed
    Score: 0.006
  40. Dent JA, Cary RB, Bachant JB, Domingo A, Klymkowsky MW. Host cell factors controlling vimentin organization in the Xenopus oocyte. J Cell Biol. 1992 Nov; 119(4):855-66.
    View in: PubMed
    Score: 0.006
  41. Klymkowsky MW, Shook DR, Maynell LA. Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation. Proc Natl Acad Sci U S A. 1992 Sep 15; 89(18):8736-40.
    View in: PubMed
    Score: 0.006
  42. Cattell MV, Garnett AT, Klymkowsky MW, Medeiros DM. A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. Evol Dev. 2012 Jan-Feb; 14(1):104-15.
    View in: PubMed
    Score: 0.006
  43. Klymkowsky MW. Intermediate filaments. Getting under the skin. Nature. 1991 Nov 28; 354(6351):264.
    View in: PubMed
    Score: 0.006
  44. Klymkowsky MW, Maynell LA, Nislow C. Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1. J Cell Biol. 1991 Aug; 114(4):787-97.
    View in: PubMed
    Score: 0.005
  45. Klymkowsky MW, Hanken J. Whole-mount staining of Xenopus and other vertebrates. Methods Cell Biol. 1991; 36:419-41.
    View in: PubMed
    Score: 0.005
  46. Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW, Sokol SY. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell. 2010 Oct 19; 19(4):521-32.
    View in: PubMed
    Score: 0.005
  47. Chu DT, Klymkowsky MW. The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus. Dev Biol. 1989 Nov; 136(1):104-17.
    View in: PubMed
    Score: 0.005
  48. Klymkowsky MW, Maynell LA. MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs. Dev Biol. 1989 Aug; 134(2):479-85.
    View in: PubMed
    Score: 0.005
  49. Klymkowsky MW, Bachant JB, Domingo A. Functions of intermediate filaments. Cell Motil Cytoskeleton. 1989; 14(3):309-31.
    View in: PubMed
    Score: 0.005
  50. Dent JA, Polson AG, Klymkowsky MW. A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development. 1989 Jan; 105(1):61-74.
    View in: PubMed
    Score: 0.005
  51. Schlosser G, Awtry T, Brugmann SA, Jensen ED, Neilson K, Ruan G, Stammler A, Voelker D, Yan B, Zhang C, Klymkowsky MW, Moody SA. Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Dev Biol. 2008 Aug 01; 320(1):199-214.
    View in: PubMed
    Score: 0.004
  52. Murti KG, Goorha R, Klymkowsky MW. A functional role for intermediate filaments in the formation of frog virus 3 assembly sites. Virology. 1988 Jan; 162(1):264-9.
    View in: PubMed
    Score: 0.004
  53. Rossi CC, Hernandez-Lagunas L, Zhang C, Choi IF, Kwok L, Klymkowsky M, Artinger KB. Rohon-Beard sensory neurons are induced by BMP4 expressing non-neural ectoderm in Xenopus laevis. Dev Biol. 2008 Feb 15; 314(2):351-61.
    View in: PubMed
    Score: 0.004
  54. Klymkowsky MW, Maynell LA, Polson AG. Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos. Development. 1987 Jul; 100(3):543-57.
    View in: PubMed
    Score: 0.004
  55. Wang TW, Stromberg GP, Whitney JT, Brower NW, Klymkowsky MW, Parent JM. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. J Comp Neurol. 2006 Jul 01; 497(1):88-100.
    View in: PubMed
    Score: 0.004
  56. Rubin LL, Chalfin NA, Adamo A, Klymkowsky MW. Cellular and secreted forms of acetylcholinesterase in mouse muscle cultures. J Neurochem. 1985 Dec; 45(6):1932-40.
    View in: PubMed
    Score: 0.004
  57. Klymkowsky MW, Miller RH, Lane EB. Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization. J Cell Biol. 1983 Feb; 96(2):494-509.
    View in: PubMed
    Score: 0.003
  58. Lane EB, Klymkowsky MW. Epithelial tonofilaments: investigating their form and function using monoclonal antibodies. Cold Spring Harb Symp Quant Biol. 1982; 46 Pt 1:387-402.
    View in: PubMed
    Score: 0.003
  59. Klymkowsky MW. Vimentin and keratin intermediate filament systems in cultured PtK2 epithelial cells are interrelated. EMBO J. 1982; 1(2):161-5.
    View in: PubMed
    Score: 0.003
  60. Klymkowsky MW. Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody. Nature. 1981 May 21; 291(5812):249-51.
    View in: PubMed
    Score: 0.003
  61. Klymkowsky MW, Heuser JE, Stroud RM. Protease effects on the structure of acetylcholine receptor membranes from Torpedo californica. J Cell Biol. 1980 Jun; 85(3):823-38.
    View in: PubMed
    Score: 0.003
  62. Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell. 1999 Oct; 4(4):487-98.
    View in: PubMed
    Score: 0.002
  63. Klymkowsky MW, Stroud RM. Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. J Mol Biol. 1979 Mar 05; 128(3):319-34.
    View in: PubMed
    Score: 0.002
  64. Hanken J, Klymkowsky MW, Alley KE, Jennings DH. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proc Biol Sci. 1997 Sep 22; 264(1386):1349-54.
    View in: PubMed
    Score: 0.002
  65. Kofron M, Spagnuolo A, Klymkowsky M, Wylie C, Heasman J. The roles of maternal alpha-catenin and plakoglobin in the early Xenopus embryo. Development. 1997 Apr; 124(8):1553-60.
    View in: PubMed
    Score: 0.002
  66. Cary RB, Klymkowsky MW, Evans RM, Domingo A, Dent JA, Backhus LE. Vimentin's tail interacts with actin-containing structures in vivo. J Cell Sci. 1994 Jun; 107 ( Pt 6):1609-22.
    View in: PubMed
    Score: 0.002
  67. Doedens J, Maynell LA, Klymkowsky MW, Kirkegaard K. Secretory pathway function, but not cytoskeletal integrity, is required in poliovirus infection. Arch Virol Suppl. 1994; 9:159-72.
    View in: PubMed
    Score: 0.002
  68. Hanken J, Klymkowsky MW, Summers CH, Seufert DW, Ingebrigtsen N. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount immunohistochemistry. J Morphol. 1992 Jan; 211(1):95-118.
    View in: PubMed
    Score: 0.001
  69. Marazzi G, Bard F, Klymkowsky MW, Rubin LL. Microinjection of a monoclonal antibody against a 37-kD protein (tropomyosin 2) prevents the formation of new acetylcholine receptor clusters. J Cell Biol. 1989 Nov; 109(5):2337-44.
    View in: PubMed
    Score: 0.001
  70. Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan; 37(1):371-83.
    View in: PubMed
    Score: 0.001
  71. Ross MJ, Klymkowsky MW, Agard DA, Stroud RM. Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica. J Mol Biol. 1977 Nov; 116(4):635-59.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)