Connection
Katerina Kechris to Software
This is a "connection" page, showing publications Katerina Kechris has written about Software.
|
|
Connection Strength |
|
 |
|
 |
|
2.113 |
|
|
|
-
Liu W, Vu T, R Konigsberg I, A Pratte K, Zhuang Y, Kechris KJ. Smccnet 2.0: a comprehensive tool for multi-omics network inference with shiny visualization. BMC Bioinformatics. 2024 Aug 24; 25(1):276.
Score: 0.641
-
Hughes G, Cruickshank-Quinn C, Reisdorph R, Lutz S, Petrache I, Reisdorph N, Bowler R, Kechris K. MSPrep--summarization, normalization and diagnostics for processing of mass spectrometry-based metabolomic data. Bioinformatics. 2014 Jan 01; 30(1):133-4.
Score: 0.303
-
Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics. 2012 Nov 15; 28(22):2986-8.
Score: 0.280
-
Kechris K, Li H. c-REDUCE: incorporating sequence conservation to detect motifs that correlate with expression. BMC Bioinformatics. 2008 Nov 28; 9:506.
Score: 0.215
-
Carpenter CM, Frank DN, Williamson K, Arbet J, Wagner BD, Kechris K, Kroehl ME. tidyMicro: a pipeline for microbiome data analysis and visualization using the tidyverse in R. BMC Bioinformatics. 2021 Feb 01; 22(1):41.
Score: 0.125
-
Chang HY, Colby SM, Du X, Gomez JD, Helf MJ, Kechris K, Kirkpatrick CR, Li S, Patti GJ, Renslow RS, Subramaniam S, Verma M, Xia J, Young JD. A Practical Guide to Metabolomics Software Development. Anal Chem. 2021 02 02; 93(4):1912-1923.
Score: 0.125
-
Zhuang YH, Wade K, Saba LM, Kechris K. Development of a tissue augmented Bayesian model for expression quantitative trait loci analysis. Math Biosci Eng. 2019 09 26; 17(1):122-143.
Score: 0.114
-
Siska C, Kechris K. Differential correlation for sequencing data. BMC Res Notes. 2017 Jan 19; 10(1):54.
Score: 0.095
-
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014; 42(17):e133.
Score: 0.080
-
De S, Pedersen BS, Kechris K. The dilemma of choosing the ideal permutation strategy while estimating statistical significance of genome-wide enrichment. Brief Bioinform. 2014 Nov; 15(6):919-28.
Score: 0.075
-
Lyu Y, Xue L, Zhang F, Koch H, Saba L, Kechris K, Li Q. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network. PLoS Comput Biol. 2018 09; 14(9):e1006436.
Score: 0.027
-
Reisdorph N, Stearman R, Kechris K, Phang TL, Reisdorph R, Prenni J, Erle DJ, Coldren C, Schey K, Nesvizhskii A, Geraci M. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics. Genomics Proteomics Bioinformatics. 2013 Dec; 11(6):368-77.
Score: 0.019
-
Bennett B, Saba LM, Hornbaker CK, Kechris KJ, Hoffman P, Tabakoff B. Genetical genomic analysis of complex phenotypes using the PhenoGen website. Behav Genet. 2011 Jul; 41(4):625-8.
Score: 0.016
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|