Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Connection

Min Han to Caenorhabditis elegans

This is a "connection" page, showing publications Min Han has written about Caenorhabditis elegans.

 
Connection Strength
 
 
 
15.254
 
  1. Sewell AK, Cui M, Zhu M, Host MR, Han M. Enterobactin carries iron into Caenorhabditis elegans and mammalian intestinal cells by a mechanism independent of divalent metal transporter DMT1. J Biol Chem. 2025 Feb; 301(2):108158.
    View in: PubMed
    Score: 0.714
  2. Tian D, Han M. Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists. Dev Cell. 2022 02 07; 57(3):361-372.e5.
    View in: PubMed
    Score: 0.582
  3. Sewell AK, Han M. Learning from the worm: the effectiveness of protein-bound Moco to treat Moco deficiency. Genes Dev. 2021 02 01; 35(3-4):177-179.
    View in: PubMed
    Score: 0.544
  4. Weaver BP, Weaver YM, Omi S, Yuan W, Ewbank JJ, Han M. Non-Canonical Caspase Activity Antagonizes p38 MAPK Stress-Priming Function to Support Development. Dev Cell. 2020 05 04; 53(3):358-369.e6.
    View in: PubMed
    Score: 0.515
  5. Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics. 2019 10; 213(2):329-360.
    View in: PubMed
    Score: 0.496
  6. Zabinsky RA, Weum BM, Cui M, Han M. RNA Binding Protein Vigilin Collaborates with miRNAs To Regulate Gene Expression for Caenorhabditis elegans Larval Development. G3 (Bethesda). 2017 08 07; 7(8):2511-2518.
    View in: PubMed
    Score: 0.427
  7. Weaver BP, Weaver YM, Mitani S, Han M. Coupled Caspase and N-End Rule Ligase Activities Allow Recognition and Degradation of Pluripotency Factor LIN-28 during Non-Apoptotic Development. Dev Cell. 2017 06 19; 41(6):665-673.e6.
    View in: PubMed
    Score: 0.422
  8. Qi B, Kniazeva M, Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal's food behavior and growth. Elife. 2017 06 01; 6.
    View in: PubMed
    Score: 0.422
  9. Tang H, Han M. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation. Cell. 2017 04 20; 169(3):457-469.e13.
    View in: PubMed
    Score: 0.418
  10. Cui M, Wang Y, Cavaleri J, Kelson T, Teng Y, Han M. Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans. Genetics. 2017 02; 205(2):775-785.
    View in: PubMed
    Score: 0.408
  11. Weaver BP, Sewell AK, Han M. Time to move the fat. Genes Dev. 2016 07 01; 30(13):1481-2.
    View in: PubMed
    Score: 0.396
  12. Chi C, Ronai D, Than MT, Walker CJ, Sewell AK, Han M. Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in C. elegans. Genes Dev. 2016 Feb 01; 30(3):307-20.
    View in: PubMed
    Score: 0.385
  13. Jia F, Cui M, Than MT, Han M. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain a-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency. J Biol Chem. 2016 Feb 05; 291(6):2967-73.
    View in: PubMed
    Score: 0.381
  14. Han M. Twists and turns--How we stepped into and had fun in the "boring" lipid field. Sci China Life Sci. 2015 Nov; 58(11):1073-83.
    View in: PubMed
    Score: 0.378
  15. Zhu H, Sewell AK, Han M. Intestinal apical polarity mediates regulation of TORC1 by glucosylceramide in C. elegans. Genes Dev. 2015 Jun 15; 29(12):1218-23.
    View in: PubMed
    Score: 0.368
  16. Kniazeva M, Zhu H, Sewell AK, Han M. A Lipid-TORC1 Pathway Promotes Neuronal Development and Foraging Behavior under Both Fed and Fasted Conditions in C. elegans. Dev Cell. 2015 May 04; 33(3):260-71.
    View in: PubMed
    Score: 0.364
  17. Weaver BP, Zabinsky R, Weaver YM, Lee ES, Xue D, Han M. CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. Elife. 2014 Dec 30; 3:e04265.
    View in: PubMed
    Score: 0.357
  18. Wang R, Kniazeva M, Han M. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans. PLoS One. 2013; 8(9):e76270.
    View in: PubMed
    Score: 0.327
  19. Than MT, Kudlow BA, Han M. Functional analysis of neuronal microRNAs in Caenorhabditis elegans dauer formation by combinational genetics and Neuronal miRISC immunoprecipitation. PLoS Genet. 2013 Jun; 9(6):e1003592.
    View in: PubMed
    Score: 0.321
  20. Zhu H, Shen H, Sewell AK, Kniazeva M, Han M. A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans. Elife. 2013 May 21; 2:e00429.
    View in: PubMed
    Score: 0.319
  21. Cui M, Cohen ML, Teng C, Han M. The tumor suppressor Rb critically regulates starvation-induced stress response in C. elegans. Curr Biol. 2013 Jun 03; 23(11):975-80.
    View in: PubMed
    Score: 0.318
  22. Kniazeva M, Han M. Fat chance for longevity. Genes Dev. 2013 Feb 15; 27(4):351-4.
    View in: PubMed
    Score: 0.313
  23. Kudlow BA, Zhang L, Han M. Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol Cell. 2012 May 25; 46(4):530-41.
    View in: PubMed
    Score: 0.295
  24. Kniazeva M, Shen H, Euler T, Wang C, Han M. Regulation of maternal phospholipid composition and IP(3)-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C. elegans. Genes Dev. 2012 Mar 15; 26(6):554-66.
    View in: PubMed
    Score: 0.294
  25. Zhang X, Zabinsky R, Teng Y, Cui M, Han M. microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc Natl Acad Sci U S A. 2011 Nov 01; 108(44):17997-8002.
    View in: PubMed
    Score: 0.286
  26. Kim S, Johnson W, Chen C, Sewell AK, Byström AS, Han M. Allele-specific suppressors of lin-1(R175Opal) identify functions of MOC-3 and DPH-3 in tRNA modification complexes in Caenorhabditis elegans. Genetics. 2010 Aug; 185(4):1235-47.
    View in: PubMed
    Score: 0.259
  27. Han M. Advancing biology with a growing worm field. Dev Dyn. 2010 May; 239(5):1263-4.
    View in: PubMed
    Score: 0.258
  28. Zhang L, Hammell M, Kudlow BA, Ambros V, Han M. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development. 2009 Sep; 136(18):3043-55.
    View in: PubMed
    Score: 0.246
  29. Seamen E, Blanchette JM, Han M. P-type ATPase TAT-2 negatively regulates monomethyl branched-chain fatty acid mediated function in post-embryonic growth and development in C. elegans. PLoS Genet. 2009 Aug; 5(8):e1000589.
    View in: PubMed
    Score: 0.245
  30. Kniazeva M, Euler T, Han M. A branched-chain fatty acid is involved in post-embryonic growth control in parallel to the insulin receptor pathway and its biosynthesis is feedback-regulated in C. elegans. Genes Dev. 2008 Aug 01; 22(15):2102-10.
    View in: PubMed
    Score: 0.229
  31. Tucker M, Han M. Muscle cell migrations of C. elegans are mediated by the alpha-integrin INA-1, Eph receptor VAB-1, and a novel peptidase homologue MNP-1. Dev Biol. 2008 Jun 15; 318(2):215-23.
    View in: PubMed
    Score: 0.223
  32. Zhang L, Ding L, Cheung TH, Dong MQ, Chen J, Sewell AK, Liu X, Yates JR, Han M. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell. 2007 Nov 30; 28(4):598-613.
    View in: PubMed
    Score: 0.218
  33. Cui M, Han M. Roles of chromatin factors in C. elegans development. WormBook. 2007 May 03; 1-16.
    View in: PubMed
    Score: 0.210
  34. Morita K, Han M. Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans. EMBO J. 2006 Dec 13; 25(24):5794-804.
    View in: PubMed
    Score: 0.204
  35. Cui M, Chen J, Myers TR, Hwang BJ, Sternberg PW, Greenwald I, Han M. SynMuv genes redundantly inhibit lin-3/EGF expression to prevent inappropriate vulval induction in C. elegans. Dev Cell. 2006 May; 10(5):667-72.
    View in: PubMed
    Score: 0.196
  36. Suzuki Y, Han M. Genetic redundancy masks diverse functions of the tumor suppressor gene PTEN during C. elegans development. Genes Dev. 2006 Feb 15; 20(4):423-8.
    View in: PubMed
    Score: 0.193
  37. Morita K, Hirono K, Han M. The Caenorhabditis elegans ect-2 RhoGEF gene regulates cytokinesis and migration of epidermal P cells. EMBO Rep. 2005 Dec; 6(12):1163-8.
    View in: PubMed
    Score: 0.190
  38. Ding L, Spencer A, Morita K, Han M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell. 2005 Aug 19; 19(4):437-47.
    View in: PubMed
    Score: 0.186
  39. Chen Z, Eastburn DJ, Han M. The Caenorhabditis elegans nuclear receptor gene nhr-25 regulates epidermal cell development. Mol Cell Biol. 2004 Sep; 24(17):7345-58.
    View in: PubMed
    Score: 0.174
  40. Kniazeva M, Crawford QT, Seiber M, Wang CY, Han M. Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol. 2004 Sep; 2(9):E257.
    View in: PubMed
    Score: 0.174
  41. Cui M, Fay DS, Han M. lin-35/Rb cooperates with the SWI/SNF complex to control Caenorhabditis elegans larval development. Genetics. 2004 Jul; 167(3):1177-85.
    View in: PubMed
    Score: 0.172
  42. Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J. 2004 Jan 14; 23(1):111-9.
    View in: PubMed
    Score: 0.166
  43. Cui M, Han M. Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. Dev Biol. 2003 May 01; 257(1):104-16.
    View in: PubMed
    Score: 0.159
  44. Kniazeva M, Sieber M, McCauley S, Zhang K, Watts JL, Han M. Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans. Genetics. 2003 Jan; 163(1):159-69.
    View in: PubMed
    Score: 0.155
  45. Starr DA, Han M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science. 2002 Oct 11; 298(5592):406-9.
    View in: PubMed
    Score: 0.151
  46. Antoshechkin I, Han M. The C. elegans evl-20 gene is a homolog of the small GTPase ARL2 and regulates cytoskeleton dynamics during cytokinesis and morphogenesis. Dev Cell. 2002 May; 2(5):579-91.
    View in: PubMed
    Score: 0.148
  47. Fay DS, Keenan S, Han M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev. 2002 Feb 15; 16(4):503-17.
    View in: PubMed
    Score: 0.146
  48. Hanna-Rose W, Han M. The Caenorhabditis elegans EGL-26 protein mediates vulval cell morphogenesis. Dev Biol. 2002 Jan 15; 241(2):247-58.
    View in: PubMed
    Score: 0.145
  49. Tang H, Cui M, Han M. Fatty acids impact sarcomere integrity through myristoylation and ER homeostasis. Cell Rep. 2021 08 17; 36(7):109539.
    View in: PubMed
    Score: 0.141
  50. Qi B, Han M. Microbial Siderophore Enterobactin Promotes Mitochondrial Iron Uptake and Development of the Host via Interaction with ATP Synthase. Cell. 2018 10 04; 175(2):571-582.e11.
    View in: PubMed
    Score: 0.115
  51. Cohen ML, Kim S, Morita K, Kim SH, Han M. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs. PLoS Genet. 2015 Mar; 11(3):e1005099.
    View in: PubMed
    Score: 0.091
  52. Zhu H, Han M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu Rev Genet. 2014; 48:119-48.
    View in: PubMed
    Score: 0.087
  53. Zhang X, Han M. Nuclear migration: rock and roll facilitated by dynein and kinesin. Curr Biol. 2010 Dec 07; 20(23):R1027-9.
    View in: PubMed
    Score: 0.067
  54. Green RM, Gally F, Keeney JG, Alper S, Gao B, Han M, Martin RJ, Weinberger AR, Case SR, Minor MN, Chu HW. Impact of cigarette smoke exposure on innate immunity: a Caenorhabditis elegans model. PLoS One. 2009 Aug 31; 4(8):e6860.
    View in: PubMed
    Score: 0.062
  55. Cui M, Allen MA, Larsen A, Macmorris M, Han M, Blumenthal T. Genes involved in pre-mRNA 3'-end formation and transcription termination revealed by a lin-15 operon Muv suppressor screen. Proc Natl Acad Sci U S A. 2008 Oct 28; 105(43):16665-70.
    View in: PubMed
    Score: 0.058
  56. Cui M, Kim EB, Han M. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet. 2006 May; 2(5):e74.
    View in: PubMed
    Score: 0.049
  57. Eastburn DJ, Han M. A gain-of-function allele of cbp-1, the Caenorhabditis elegans ortholog of the mammalian CBP/p300 gene, causes an increase in histone acetyltransferase activity and antagonism of activated Ras. Mol Cell Biol. 2005 Nov; 25(21):9427-34.
    View in: PubMed
    Score: 0.047
  58. Suzuki Y, Morris GA, Han M, Wood WB. A cuticle collagen encoded by the lon-3 gene may be a target of TGF-beta signaling in determining Caenorhabditis elegans body shape. Genetics. 2002 Dec; 162(4):1631-9.
    View in: PubMed
    Score: 0.039
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)