Connection
Fuyong Xing to Sensitivity and Specificity
This is a "connection" page, showing publications Fuyong Xing has written about Sensitivity and Specificity.
|
|
Connection Strength |
|
 |
|
 |
|
0.347 |
|
|
|
-
Xing F, Shi X, Zhang Z, Cai J, Xie Y, Yang L. Transfer Shape Modeling Towards High-throughput Microscopy Image Segmentation. Med Image Comput Comput Assist Interv. 2016 Oct; 9902:183-190.
Score: 0.099
-
Xing F, Yang L. Robust selection-based sparse shape model for lung cancer image segmentation. Med Image Comput Comput Assist Interv. 2013; 16(Pt 3):404-12.
Score: 0.077
-
Shi X, Xing F, Xu K, Xie Y, Su H, Yang L. Supervised graph hashing for histopathology image retrieval and classification. Med Image Anal. 2017 Dec; 42:117-128.
Score: 0.026
-
Xie Y, Xing F, Shi X, Kong X, Su H, Yang L. Efficient and robust cell detection: A structured regression approach. Med Image Anal. 2018 02; 44:245-254.
Score: 0.026
-
Cai J, Lu L, Zhang Z, Xing F, Yang L, Yin Q. Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks. Med Image Comput Comput Assist Interv. 2016 Oct; 9901:442-450.
Score: 0.025
-
Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L. Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders. Med Image Comput Comput Assist Interv. 2015 Oct; 9351:383-390.
Score: 0.023
-
Xie Y, Kong X, Xing F, Liu F, Su H, Yang L. Deep Voting: A Robust Approach Toward Nucleus Localization in Microscopy Images. Med Image Comput Comput Assist Interv. 2015 Oct; 9351:374-382.
Score: 0.023
-
Xie Y, Xing F, Kong X, Su H, Yang L. Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network. Med Image Comput Comput Assist Interv. 2015 Oct; 9351:358-365.
Score: 0.023
-
Zhang X, Xing F, Su H, Yang L, Zhang S. High-throughput histopathological image analysis via robust cell segmentation and hashing. Med Image Anal. 2015 Dec; 26(1):306-15.
Score: 0.023
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|