Connection
Fuyong Xing to Lung Neoplasms
This is a "connection" page, showing publications Fuyong Xing has written about Lung Neoplasms.
|
|
Connection Strength |
|
 |
|
 |
|
0.572 |
|
|
|
-
Xing F, Yang L. Robust selection-based sparse shape model for lung cancer image segmentation. Med Image Comput Comput Assist Interv. 2013; 16(Pt 3):404-12.
Score: 0.165
-
Warsavage T, Xing F, Bar?n AE, Feser WJ, Hirsch E, Miller YE, Malkoski S, Wolf HJ, Wilson DO, Ghosh D. Quantifying the incremental value of deep learning: Application to lung nodule detection. PLoS One. 2020; 15(4):e0231468.
Score: 0.068
-
Shi X, Su H, Xing F, Liang Y, Qu G, Yang L. Graph temporal ensembling based semi-supervised convolutional neural network with noisy labels for histopathology image analysis. Med Image Anal. 2020 02; 60:101624.
Score: 0.067
-
Shi X, Xing F, Xu K, Xie Y, Su H, Yang L. Supervised graph hashing for histopathology image retrieval and classification. Med Image Anal. 2017 Dec; 42:117-128.
Score: 0.057
-
Xing F, Shi X, Zhang Z, Cai J, Xie Y, Yang L. Transfer Shape Modeling Towards High-throughput Microscopy Image Segmentation. Med Image Comput Comput Assist Interv. 2016 Oct; 9902:183-190.
Score: 0.054
-
Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L. Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders. Med Image Comput Comput Assist Interv. 2015 Oct; 9351:383-390.
Score: 0.050
-
Zhang X, Xing F, Su H, Yang L, Zhang S. High-throughput histopathological image analysis via robust cell segmentation and hashing. Med Image Anal. 2015 Dec; 26(1):306-15.
Score: 0.050
-
Wang H, Xing F, Su H, Stromberg A, Yang L. Novel image markers for non-small cell lung cancer classification and survival prediction. BMC Bioinformatics. 2014 Sep 19; 15:310.
Score: 0.046
-
Sapkota M, Shi X, Xing F, Yang L. Deep Convolutional Hashing for Low-Dimensional Binary Embedding of Histopathological Images. IEEE J Biomed Health Inform. 2019 03; 23(2):805-816.
Score: 0.015
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|