Connection
Shelley Copley to Biodegradation, Environmental
This is a "connection" page, showing publications Shelley Copley has written about Biodegradation, Environmental.
|
|
Connection Strength |
|
 |
|
 |
|
0.750 |
|
|
|
-
Yadid I, Rudolph J, Hlouchova K, Copley SD. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol. Proc Natl Acad Sci U S A. 2013 Jun 11; 110(24):E2182-90.
Score: 0.107
-
Hlouchova K, Rudolph J, Pietari JM, Behlen LS, Copley SD. Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum. Biochemistry. 2012 May 08; 51(18):3848-60.
Score: 0.099
-
Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M. The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol. 2012; 4(2):184-98.
Score: 0.097
-
Copley SD. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol. 2009 Aug; 5(8):559-66.
Score: 0.082
-
Warner JR, Lawson SL, Copley SD. A mechanistic investigation of the thiol-disulfide exchange step in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase. Biochemistry. 2005 Aug 02; 44(30):10360-8.
Score: 0.062
-
Dai M, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol. 2004 Apr; 70(4):2391-7.
Score: 0.057
-
Dai M, Rogers JB, Warner JR, Copley SD. A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol. 2003 Jan; 185(1):302-10.
Score: 0.052
-
Anandarajah K, Kiefer PM, Donohoe BS, Copley SD. Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemistry. 2000 May 09; 39(18):5303-11.
Score: 0.043
-
Xu L, Resing K, Lawson SL, Babbitt PC, Copley SD. Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry. 1999 Jun 15; 38(24):7659-69.
Score: 0.041
-
Copley SD. Microbial dehalogenases: enzymes recruited to convert xenobiotic substrates. Curr Opin Chem Biol. 1998 Oct; 2(5):613-7.
Score: 0.039
-
Mikkonen A, Yl?ranta K, Tiirola M, Dutra LAL, Salmi P, Romantschuk M, Copley S, Ik?heimo J, Sinkkonen A. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria. Water Res. 2018 07 01; 138:118-128.
Score: 0.037
-
Copley SD. Diverse mechanistic approaches to difficult chemical transformations: microbial dehalogenation of chlorinated aromatic compounds. Chem Biol. 1997 Mar; 4(3):169-74.
Score: 0.035
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|