Connection
Alena Grabowski to Running
This is a "connection" page, showing publications Alena Grabowski has written about Running.
|
|
Connection Strength |
|
![](https://profiles.ucdenver.edu/Framework/Images/connection_left.gif) |
|
![](https://profiles.ucdenver.edu/Framework/Images/connection_right.gif) |
|
9.307 |
|
|
|
-
Allen SP, Beck ON, Grabowski AM. Evaluating the 'cost of generating force' hypothesis across frequency in human running and hopping. J Exp Biol. 2022 09 15; 225(18).
Score: 0.701
-
Alcantara RS, Edwards WB, Millet GY, Grabowski AM. Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution. PeerJ. 2022; 10:e12752.
Score: 0.668
-
Taboga P, Beck ON, Grabowski AM. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations. PLoS One. 2020; 15(2):e0229035.
Score: 0.587
-
Taboga P, Drees EK, Beck ON, Grabowski AM. Prosthetic model, but not stiffness or height, affects maximum running velocity in athletes with unilateral transtibial amputations. Sci Rep. 2020 02 04; 10(1):1763.
Score: 0.585
-
Allen SP, Grabowski AM. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance. J Appl Physiol (1985). 2019 08 01; 127(2):520-530.
Score: 0.560
-
Beck ON, Grabowski AM. Athletes With Versus Without Leg Amputations: Different Biomechanics, Similar Running Economy. Exerc Sport Sci Rev. 2019 01; 47(1):15-21.
Score: 0.542
-
Beck ON, Azua EN, Grabowski AM. Step time asymmetry increases metabolic energy expenditure during running. Eur J Appl Physiol. 2018 Oct; 118(10):2147-2154.
Score: 0.526
-
Beck ON, Grabowski AM. The biomechanics of the fastest sprinter with a unilateral transtibial amputation. J Appl Physiol (1985). 2018 03 01; 124(3):641-645.
Score: 0.499
-
Beck ON, Taboga P, Grabowski AM. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations? J R Soc Interface. 2017 06; 14(131).
Score: 0.486
-
Beck ON, Taboga P, Grabowski AM. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations. J Appl Physiol (1985). 2017 Jul 01; 123(1):38-48.
Score: 0.480
-
Beck ON, Taboga P, Grabowski AM. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations. J Appl Physiol (1985). 2017 Apr 01; 122(4):976-984.
Score: 0.474
-
Beck ON, Taboga P, Grabowski AM. Characterizing the Mechanical Properties of Running-Specific Prostheses. PLoS One. 2016; 11(12):e0168298.
Score: 0.471
-
Taboga P, Kram R, Grabowski AM. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. J Exp Biol. 2016 Mar; 219(Pt 6):851-8.
Score: 0.446
-
Arellano CJ, McDermott WJ, Kram R, Grabowski AM. Effect of running speed and leg prostheses on mediolateral foot placement and its variability. PLoS One. 2015; 10(1):e0115637.
Score: 0.412
-
Grabowski AM, McGowan CP, McDermott WJ, Beale MT, Kram R, Herr HM. Running-specific prostheses limit ground-force during sprinting. Biol Lett. 2010 Apr 23; 6(2):201-4.
Score: 0.288
-
Grabowski AM, Kram R. Effects of velocity and weight support on ground reaction forces and metabolic power during running. J Appl Biomech. 2008 Aug; 24(3):288-97.
Score: 0.264
-
Grabowski AM, Kram R. Running with horizontal pulling forces: the benefits of towing. Eur J Appl Physiol. 2008 Oct; 104(3):473-9.
Score: 0.261
-
Day EM, Alcantara RS, McGeehan MA, Grabowski AM, Hahn ME. Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running. J Biomech. 2021 04 15; 119:110323.
Score: 0.157
-
Hobara H, Hashizume S, Funken J, Willwacher S, M?ller R, Grabowski AM, Potthast W. Vertical stiffness during one-legged hopping with and without using a running-specific prosthesis. J Biomech. 2019 03 27; 86:34-39.
Score: 0.136
-
Kipp S, Grabowski AM, Kram R. What determines the metabolic cost of human running across a wide range of velocities? J Exp Biol. 2018 09 24; 221(Pt 18).
Score: 0.133
-
Beck ON, Grabowski AM, Ortega JD. Neither total muscle activation nor co-activation explains the youthful walking economy of older runners. Gait Posture. 2018 09; 65:163-168.
Score: 0.131
-
Beck ON, Kipp S, Roby JM, Grabowski AM, Kram R, Ortega JD. Older Runners Retain Youthful Running Economy despite Biomechanical Differences. Med Sci Sports Exerc. 2016 Apr; 48(4):697-704.
Score: 0.112
-
Taboga P, Grabowski AM, di Prampero PE, Kram R. Optimal starting block configuration in sprint running; a comparison of biological and prosthetic legs. J Appl Biomech. 2014 Jun; 30(3):381-9.
Score: 0.096
-
McGowan CP, Grabowski AM, McDermott WJ, Herr HM, Kram R. Leg stiffness of sprinters using running-specific prostheses. J R Soc Interface. 2012 Aug 07; 9(73):1975-82.
Score: 0.084
-
Kram R, Grabowski AM, McGowan CP, Brown MB, Herr HM. Counterpoint: Artificial legs do not make artificially fast running speeds possible. J Appl Physiol (1985). 2010 Apr; 108(4):1012-4; discussion 1014; author reply 1020.
Score: 0.074
-
Weyand PG, Bundle MW, McGowan CP, Grabowski A, Brown MB, Kram R, Herr H. The fastest runner on artificial legs: different limbs, similar function? J Appl Physiol (1985). 2009 Sep; 107(3):903-11.
Score: 0.070
-
Teunissen LP, Grabowski A, Kram R. Effects of independently altering body weight and body mass on the metabolic cost of running. J Exp Biol. 2007 Dec; 210(Pt 24):4418-27.
Score: 0.063
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|