Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Connection

Chapla Agarwal to Tumor Cells, Cultured

This is a "connection" page, showing publications Chapla Agarwal has written about Tumor Cells, Cultured.

 
Connection Strength
 
 
 
0.738
 
  1. Tyagi A, Kumar S, Raina K, Wempe MF, Maroni PD, Agarwal R, Agarwal C. Differential effect of grape seed extract and its active constituent procyanidin B2 3,3?-di-O-gallate against prostate cancer stem cells. Mol Carcinog. 2019 07; 58(7):1105-1117.
    View in: PubMed
    Score: 0.141
  2. Shrotriya S, Deep G, Lopert P, Patel M, Agarwal R, Agarwal C. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells. Mol Carcinog. 2015 Dec; 54(12):1734-47.
    View in: PubMed
    Score: 0.106
  3. Shrotriya S, Deep G, Gu M, Kaur M, Jain AK, Inturi S, Agarwal R, Agarwal C. Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells. Carcinogenesis. 2012 Apr; 33(4):848-58.
    View in: PubMed
    Score: 0.086
  4. Kaur M, Agarwal R, Agarwal C. Grape seed extract induces anoikis and caspase-mediated apoptosis in human prostate carcinoma LNCaP cells: possible role of ataxia telangiectasia mutated-p53 activation. Mol Cancer Ther. 2006 May; 5(5):1265-74.
    View in: PubMed
    Score: 0.058
  5. Singh RP, Tyagi AK, Dhanalakshmi S, Agarwal R, Agarwal C. Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int J Cancer. 2004 Feb 20; 108(5):733-40.
    View in: PubMed
    Score: 0.050
  6. Tyagi A, Agarwal R, Agarwal C. Grape seed extract inhibits EGF-induced and constitutively active mitogenic signaling but activates JNK in human prostate carcinoma DU145 cells: possible role in antiproliferation and apoptosis. Oncogene. 2003 Mar 06; 22(9):1302-16.
    View in: PubMed
    Score: 0.047
  7. Romanucci V, Giordano M, Pagano R, Agarwal C, Agarwal R, Zarrelli A, Di Fabio G. Solid-phase synthesis of curcumin mimics and their anticancer activity against human pancreatic, prostate, and colorectal cancer cell lines. Bioorg Med Chem. 2021 07 15; 42:116249.
    View in: PubMed
    Score: 0.041
  8. Dhar D, Raina K, Kumar D, Wempe MF, Bagby SM, Pitts TM, Orlicky DJ, Agarwal C, Messersmith WA, Agarwal R. Bitter melon juice intake with gemcitabine intervention circumvents resistance to gemcitabine in pancreatic patient-derived xenograft tumors. Mol Carcinog. 2020 10; 59(10):1227-1240.
    View in: PubMed
    Score: 0.039
  9. Mateen S, Tyagi A, Agarwal C, Singh RP, Agarwal R. Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Mol Carcinog. 2010 Mar; 49(3):247-58.
    View in: PubMed
    Score: 0.019
  10. Deep G, Singh RP, Agarwal C, Kroll DJ, Agarwal R. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene. 2006 Feb 16; 25(7):1053-69.
    View in: PubMed
    Score: 0.014
  11. Varghese L, Agarwal C, Tyagi A, Singh RP, Agarwal R. Silibinin efficacy against human hepatocellular carcinoma. Clin Cancer Res. 2005 Dec 01; 11(23):8441-8.
    View in: PubMed
    Score: 0.014
  12. Tyagi A, Singh RP, Agarwal C, Siriwardana S, Sclafani RA, Agarwal R. Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis. 2005 Nov; 26(11):1978-87.
    View in: PubMed
    Score: 0.014
  13. Singh RP, Agrawal P, Yim D, Agarwal C, Agarwal R. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: structure-activity relationship with linarin and linarin acetate. Carcinogenesis. 2005 Apr; 26(4):845-54.
    View in: PubMed
    Score: 0.013
  14. Singh RP, Mallikarjuna GU, Sharma G, Dhanalakshmi S, Tyagi AK, Chan DC, Agarwal C, Agarwal R. Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance. Clin Cancer Res. 2004 Dec 15; 10(24):8641-7.
    View in: PubMed
    Score: 0.013
  15. Kaur M, Agarwal C, Singh RP, Guan X, Dwivedi C, Agarwal R. Skin cancer chemopreventive agent, {alpha}-santalol, induces apoptotic death of human epidermoid carcinoma A431 cells via caspase activation together with dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis. 2005 Feb; 26(2):369-80.
    View in: PubMed
    Score: 0.013
  16. Tyagi A, Agarwal C, Harrison G, Glode LM, Agarwal R. Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI-CDK-cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis. 2004 Sep; 25(9):1711-20.
    View in: PubMed
    Score: 0.013
  17. Singh RP, Sharma G, Mallikarjuna GU, Dhanalakshmi S, Agarwal C, Agarwal R. In vivo suppression of hormone-refractory prostate cancer growth by inositol hexaphosphate: induction of insulin-like growth factor binding protein-3 and inhibition of vascular endothelial growth factor. Clin Cancer Res. 2004 Jan 01; 10(1 Pt 1):244-50.
    View in: PubMed
    Score: 0.012
  18. Singh RP, Agarwal C, Agarwal R. Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes. Carcinogenesis. 2003 Mar; 24(3):555-63.
    View in: PubMed
    Score: 0.012
  19. Singh RP, Dhanalakshmi S, Tyagi AK, Chan DC, Agarwal C, Agarwal R. Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res. 2002 Jun 01; 62(11):3063-9.
    View in: PubMed
    Score: 0.011
  20. Tyagi A, Agarwal C, Agarwal R. Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention. Mol Cancer Ther. 2002 May; 1(7):525-32.
    View in: PubMed
    Score: 0.011
  21. Dhanalakshmi S, Singh RP, Agarwal C, Agarwal R. Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappaB and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene. 2002 Mar 07; 21(11):1759-67.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.

Copyright © 2025 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)