Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Persistent reversal of addiction behavior by a transient treatment


Collapse Biography 

Collapse Overview 
Collapse abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor (NMDAR) subunit GluN2B are two central mediators of long-term potentiation (LTP), a form of synaptic plasticity thought to underlie both physiological and maladaptive addiction-related learning and memory.. The proposal will test the hypotheses that transient disruption of the CaMKII/GluN2B complex (a) persistently reverses amphetamine- and cocaine-induced addiction- related behavior and (b) acutely interferes with memory consolidation but does not reverse established memory. These hypotheses are based on recent preliminary data on addiction behavior and on recent results with "normal" LTP. Notably, the results of this study will be equally significant even if they lead to rejection of our hypotheses (for instance in case we instead find that inhibition of CaMKII activity is sufficient for reversal of addiction behavior, without requirement for disruption of th CaMKII/GluN2B complex). (Aim 1) We will here first establish a pharmacological treatment that disrupts the CaMKII/GluN2B complex in vivo. (Aim 2) Then, we will determine the effect of such treatment on reversal of addiction behavior. This will directly determine feasibility of a novel therapeutic approach to addiction. (Aim 3) Finally, we will determine the effect on "normal" memory, which is also clinically important. Acute but reversible interference with memory acquisition and even erasure of recent not yet consolidated memory would be clinically acceptable side-effects. However, while an unexpected erasure also of already consolidated memory would be of high scientific impact, it would need to be overcome in therapy development (for instance by targeting a specific brain region, i.e. the NAc, which could be done but would require more intensive care). We will here utilize a highly rigorous pharmaco-genetic approach. While the pharmacological treatment enables determining the therapeutic relevance (by enabling the temporal distinction between prevention and reversal of addiction behavior), two specific mouse mutant will determine target-specificity: a CaMKII knock-out mouse will test for CaMKII-specificity, while a mouse with mutant GluN2B incapable of CaMKII binding will test for the CaMKII/GluN2B complex as the specific target. Importantly, this approach also overcomes potential compensatory effects that are frequently seen in mutant mice: If the mutant mice still develop addiction behavior (either to normal or to somewhat reduced levels) due to such compensatory effects, the pharmacological treatment should be no longer effective in these mice, if their mutation is indeed the relevant target of the treatment.


Collapse sponsor award id
R21DA036300

Collapse Time 
Collapse start date
2013-08-01
Collapse end date
2015-07-31

Copyright © 2024 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)