Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

B12 Nutrition in the Aged


Collapse Biography 

Collapse Overview 
Collapse abstract
Hyperhomocysteinemia (high serum total homocysteine) remains a problem for seniors even in this era of highly folate-fortified food in the United States. This paradox is explained because many seniors continue to have undiagnosed and untreated vitamin B 12 deficiency as shown by elevated serum methylmalonic acid concentrations. Hyperhomocysteinemia due to vitamin deficiency or renal failure may cause elevations of S-adenosylhomocysteine with a low S-adenosylmethionine/S-adenosylhomocysteine ratio, which may impair crucial methylations of brain neurotransmitters, phospholipids and myelin. A new stable isotope dilution liquid chromatography/mass spectrometry method will be used to explore the relationships between homocysteine and S-adenosylmethionine, S-adenosylhomocysteine and ratio in human seniors and rats with vitamin deficiency and renal failure. The pattern of the serum and urine metabolites will be studied after high dose oral vitamin B 12 and folic acid treatment in seniors who have vitamin B 12 deficiency and/or elevated serum S-adenosylhomocysteine concentrations. The baseline and post treatment S-adenosylmethionine and S-adenosylhomocysteine and ratio will be correlated with depression and neurologic symptoms. Enzymes of methionine metabolism such as cystathionine beta-synthase, gamma-cystathionase, methionine adenosyltransferase and S-adenosylhomocysteine hydrolase will be studied in tissues from B 12 deficient rats and in cell culture models. The long term goals of these studies are to determine whether vitamin B 12 deficiency impairs the balance of S-adenosylmethionine and S-adenosylhomocysteine. It will be determined whether the pattern of urine and serum metabolites in renal insufficiency could be differentiated from vitamin B 12 deficiency since treatment and complications might be different. New understanding of the control of regulation of methionine metabolism will be obtained in the setting of vitamin B 12 deficiency and renal insufficiency, conditions which continue to be important clinically and for which treatment with vitamins or S-adenosylmethionine supplements will be safe and widely available.
Collapse sponsor award id
R01AG009834

Collapse Time 
Collapse start date
1991-06-01
Collapse end date
2009-06-30

Copyright © 2024 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)