Muscular Atrophy
"Muscular Atrophy" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus,
MeSH (Medical Subject Headings). Descriptors are arranged in a hierarchical structure,
which enables searching at various levels of specificity.
Derangement in size and number of muscle fibers occurring with aging, reduction in blood supply, or following immobilization, prolonged weightlessness, malnutrition, and particularly in denervation.
Descriptor ID |
D009133
|
MeSH Number(s) |
C10.597.613.612 C23.300.070.500 C23.888.592.608.612
|
Concept/Terms |
Muscular Atrophy- Muscular Atrophy
- Atrophies, Muscular
- Atrophy, Muscular
- Muscular Atrophies
- Atrophy, Muscle
- Atrophies, Muscle
- Muscle Atrophies
- Muscle Atrophy
Neurogenic Muscular Atrophy- Neurogenic Muscular Atrophy
- Atrophies, Neurogenic Muscular
- Atrophy, Neurogenic Muscular
- Muscular Atrophies, Neurogenic
- Muscular Atrophy, Neurogenic
- Neurogenic Muscular Atrophies
- Neurotrophic Muscular Atrophy
- Atrophies, Neurotrophic Muscular
- Atrophy, Neurotrophic Muscular
- Muscular Atrophies, Neurotrophic
- Muscular Atrophy, Neurotrophic
- Neurotrophic Muscular Atrophies
|
Below are MeSH descriptors whose meaning is more general than "Muscular Atrophy".
Below are MeSH descriptors whose meaning is more specific than "Muscular Atrophy".
This graph shows the total number of publications written about "Muscular Atrophy" by people in this website by year, and whether "Muscular Atrophy" was a major or minor topic of these publications.
To see the data from this visualization as text, click here.
Year | Major Topic | Minor Topic | Total |
---|
1995 | 0 | 1 | 1 | 1996 | 0 | 1 | 1 | 1999 | 0 | 1 | 1 | 2000 | 0 | 1 | 1 | 2002 | 1 | 0 | 1 | 2003 | 2 | 0 | 2 | 2005 | 2 | 0 | 2 | 2006 | 1 | 0 | 1 | 2008 | 1 | 0 | 1 | 2009 | 0 | 1 | 1 | 2010 | 6 | 0 | 6 | 2011 | 0 | 1 | 1 | 2012 | 1 | 3 | 4 | 2013 | 0 | 1 | 1 | 2014 | 1 | 1 | 2 | 2015 | 1 | 1 | 2 | 2016 | 1 | 0 | 1 | 2018 | 3 | 0 | 3 | 2019 | 2 | 0 | 2 | 2020 | 1 | 0 | 1 |
To return to the timeline, click here.
Below are the most recent publications written about "Muscular Atrophy" by people in Profiles.
-
Smith RC, Cramer MS, Mitchell PJ, Lucchesi J, Ortega AM, Livingston EW, Ballard D, Zhang L, Hanson J, Barton K, Berens S, Credille KM, Bateman TA, Ferguson VL, Ma YL, Stodieck LS. Inhibition of myostatin prevents microgravity-induced loss of skeletal muscle mass and strength. PLoS One. 2020; 15(4):e0230818.
-
Cadena SM, Zhang Y, Fang J, Brachat S, Kuss P, Giorgetti E, Stodieck LS, Kneissel M, Glass DJ. Skeletal muscle in MuRF1 null mice is not spared in low-gravity conditions, indicating atrophy proceeds by unique mechanisms in space. Sci Rep. 2019 06 28; 9(1):9397.
-
Berry DB, Padwal J, Johnson S, Englund EK, Ward SR, Shahidi B. The effect of high-intensity resistance exercise on lumbar musculature in patients with low back pain: a preliminary study. BMC Musculoskelet Disord. 2019 Jun 18; 20(1):290.
-
Munroe M, Dvoretskiy S, Lopez A, Leong J, Dyle MC, Kong H, Adams CM, Boppart MD. Pericyte transplantation improves skeletal muscle recovery following hindlimb immobilization. FASEB J. 2019 06; 33(6):7694-7706.
-
Damiot A, Demangel R, Noone J, Chery I, Zahariev A, Normand S, Brioche T, Crampes F, de Glisezinski I, Lefai E, Bareille MP, Chopard A, Drai J, Collin-Chavagnac D, Heer M, Gauquelin-Koch G, Prost M, Simon P, Py G, Blanc S, Simon C, Bergouignan A, O'Gorman DJ. A nutrient cocktail prevents lipid metabolism alterations induced by 20 days of daily steps reduction and fructose overfeeding: result from a randomized study. J Appl Physiol (1985). 2019 01 01; 126(1):88-101.
-
Prado CM, Purcell SA, Alish C, Pereira SL, Deutz NE, Heyland DK, Goodpaster BH, Tappenden KA, Heymsfield SB. Implications of low muscle mass across the continuum of care: a narrative review. Ann Med. 2018 12; 50(8):675-693.
-
Martinelli S, Krumbach OHF, Pantaleoni F, Coppola S, Amin E, Pannone L, Nouri K, Farina L, Dvorsky R, Lepri F, Buchholzer M, Konopatzki R, Walsh L, Payne K, Pierpont ME, Vergano SS, Langley KG, Larsen D, Farwell KD, Tang S, Mroske C, Gallotta I, Di Schiavi E, Della Monica M, Lugli L, Rossi C, Seri M, Cocchi G, Henderson L, Baskin B, Alders M, Mendoza-Londono R, Dupuis L, Nickerson DA, Chong JX, Meeks N, Brown K, Causey T, Cho MT, Demuth S, Digilio MC, Gelb BD, Bamshad MJ, Zenker M, Ahmadian MR, Hennekam RC, Tartaglia M, Mirzaa GM. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. Am J Hum Genet. 2018 02 01; 102(2):309-320.
-
Adams CM, Ebert SM, Dyle MC. Role of ATF4 in skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care. 2017 May; 20(3):164-168.
-
Wurtzel CN, Gumucio JP, Grekin JA, Khouri RK, Russell AJ, Bedi A, Mendias CL. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear. J Orthop Res. 2017 11; 35(11):2499-2505.
-
Bullard SA, Seo S, Schilling B, Dyle MC, Dierdorff JM, Ebert SM, DeLau AD, Gibson BW, Adams CM. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4. J Biol Chem. 2016 08 19; 291(34):17496-17509.
|
People  People who have written about this concept. _
Similar Concepts
People who have written about this concept.
_
Top Journals
Top journals in which articles about this concept have been published.
|