Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Development of a Bidirectional Optogenetic Minimally Invasive Peripheral Nerve Interface with Single Axon Read-in & Read-out Specificity


Collapse Biography 

Collapse Overview 
Collapse abstract
An Optical Probe capable of Activating/Reporting on axon activity in nerves of parasympathetic nervous system would be a boon to researchers working with the pancreas. We are proposing to develop such a Probe using our background and experience in optogenetics in the peripheral nerve, bio-imaging and compact multiphoton microscope design. Current neuro-modulation approaches for the vagus nerve are generally all or nothing events that cause simultaneous changes in heart rate, for example, along with changes in pancreatic function. We propose to develop a novel compact Optogenetic based Optical Probe capable of optically neuromodulating individual afferent and/or efferent axons within nerves of the parasympathetic, or peripheral, nervous system. We seek to read-in or read-out from these nerves with the goal of modulating organs or brain circuits innervated by them. Our central premise is that we can use optics to communicate with axons in a nerve. For optical approaches to work we need to convert action potentials into an optical signal. This can be done using reporter proteins or by some other means that is ancillary to action potential generation. Because nerves do not naturally express optical proteins, we will work with transgenic mice that express these proteins and use these mice to refine our system before making it available for other researchers to use. We will develop a bench-top Optical instrument that can be shared with other research teams to allow us, and them, to interrogate specific fascicles and axons within mouse, and ultimately human, nerves. Our goal here is the vagus nerve and its innervation of the pancreas. The vagus nerve is one of the main conduits into the parasympathetic nervous system. The ability to interface with this nerve gives one the ability to neuromodulate the viscera in one direction and the brain in the other. We are proposing to couple an optical fiber with an electrowetting lens head to allow remote interrogation the vagus nerve with a bench top (i.e. portable) laser system. Integration of miniature (1mm diameter) scale electrowetting electrically tunable optics with an optical fiber-based imaging system will enable two-photon fluorescence imaging of neuron activity by readout of a fluorescent indicator. We will work with our collaborators in the field of pancreatic research to test, refine and demonstrate our ability to activate/report from in-vitro mouse vagus nerves and to see if we can control and/or sense pancreatic responses in the absence of other responses, such as a change in heart rate, using targeted neuro-modulation of specific axons in the vagus in in-vivo transgenic mice experiments.
Collapse sponsor award id
OT2OD023852

Collapse Time 
Collapse start date
2016-09-24
Collapse end date
2020-02-28

Copyright © 2021 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)