Colorado PROFILES, The Colorado Clinical and Translational Sciences Institute (CCTSI)
Keywords
Last Name
Institution

Contact Us
If you have any questions or feedback please contact us.

Neuronal Transdifferention in vivo: Mechanism and Potential


Collapse Biography 

Collapse Overview 
Collapse abstract
Although adult neurogenesis provides new neurons to some regions of the central nervous system, whether this also occurs in the peripheral nervous system is not known. Our recent in vivo studies in zebrafish larvae suggest that another mechanism might serve as a source of new neurons for the peripheral nervous system. We have found that a subset of differentiated dorsal root ganglion neurons to migrate new ventral locations and acquire new morphologies and molecular properties. The novel characteristics are all indicative of adoption of a new identity as a sympathetic ganglion neuron. Importantly, dorsal root ganglion neurons can acquire sympathetic ganglion neuron-like properties in wild type larvae under control conditions. However, sensory deprivation and blockade of a specific sodium channel, Nav1.6a, increases the number of dorsal root ganglion neurons that acquire a new identity, i.e., transdifferentiate. Even though Nav1.6a is normally expressed in several neurons, the channel's activity is required in only one cell type for maintenance of dorsal root ganglion identity. Interestingly, that cell type is not the dorsal root ganglion neuron but rather n earlier appearing sensory neuron, known as the Rohon-Beard cell. Our previous work has also shown that the neurotrophin BDNF mediates that Nav1.6a-activity-dependent signal. Recently, we have found that differentiated dorsal root ganglion neurons migrate to yet other locations besides the sympathetic ganglion, raising the possibility that migratory dorsal root ganglion neurons might assume other fates than that of the sympathetic ganglion neuron. Here we propose three Specific Aims that will provide important information about the underlying mechanisms involved in the relevant BDNF- dependent signaling. In Aim 1, we identify the cell types that secrete and respond to the relevant BDNF. In Aim 2, we determine the full range of cellular identities that migratory dorsal root ganglion neurons may adopt. Aim 3 experiments identify gene expression changes that underlie BDNF's regulation of the migratory phenotype of differentiated DRG neurons. The results will provide information that could lead to alternative strategies for treatment of neurodegenerative conditions.
Collapse sponsor award id
R01NS086839

Collapse Time 
Collapse start date
2014-02-01
Collapse end date
2020-01-31

Copyright © 2022 The Regents of the University of Colorado, a body corporate. All rights reserved. (Harvard PROFILES RNS software version: 2.11.1)